Def'n . Function Algebra For A ⊂ C ( [ a , b ] ) \mathcal A\subset C([a,b]) A ⊂ C ([ a , b ]) , that follows
(linearity) ∀ f , g ∈ A . ∀ a , b ∈ R . a f + b g ∈ A \forall f,g\in \mathcal A. \forall a,b\in\mathbb R. af + bg\in \mathcal A ∀ f , g ∈ A .∀ a , b ∈ R . a f + b g ∈ A (closed under product) ∀ f , g ∈ A . f ⋅ g ∈ A \forall f,g\in\mathcal A. f\cdot g\in \mathcal A ∀ f , g ∈ A . f ⋅ g ∈ A Thrm 1 . For A ⊂ C ( [ a , b ] ) \mathcal A\subset C([a,b]) A ⊂ C ([ a , b ]) be a function algebra, IF
(vanishes nowhere) ∀ p ∈ [ a , b ] . ∃ f ∈ A . f ( p ) ≠ 0 \forall p\in [a,b]. \exists f\in \mathcal A. f(p)\neq 0 ∀ p ∈ [ a , b ] .∃ f ∈ A . f ( p ) = 0 (separates points) ∀ x ≠ y ∈ [ a , b ] . ∃ h ∈ A . h ( x ) ≠ h ( y ) \forall x\neq y \in [a,b]. \exists h\in\mathcal A. h(x)\neq h(y) ∀ x = y ∈ [ a , b ] .∃ h ∈ A . h ( x ) = h ( y ) THEN A \mathcal A A is dense in C [ a , b ] C[a,b] C [ a , b ] , i.e. ∀ f ∈ C [ a , b ] . ∃ { f n } ∈ A . { f n } → u . c . f \forall f\in C[a,b]. \exists \{f_n\}\in \mathcal A. \{f_n\}\rightarrow^{u.c.} f ∀ f ∈ C [ a , b ] .∃ { f n } ∈ A . { f n } → u . c . f
Thrm 2 . A t r i g : = { a 0 + ∑ k = 1 N a k cos ( k n ) + ∑ k = 1 N b k sin ( k n ) ∣ a k , b k ∈ R . N ∈ N } \mathcal A_{trig}:= \{a_0 + \sum_{k=1}^N a_k\cos(kn) + \sum_{k=1}^N b_k \sin(kn) | a_k, b_k\in\mathbb R. N\in\mathbb N\} A t r i g := { a 0 + ∑ k = 1 N a k cos ( kn ) + ∑ k = 1 N b k sin ( kn ) ∣ a k , b k ∈ R . N ∈ N } is dense in C [ − π , π ] C[-\pi, \pi] C [ − π , π ]
proof . Consider the assumptions of SWT Let f f f have coefficients a k , b k , M a_k, b_k, M a k , b k , M , g g g have a k ′ , a k ′ , N a'_k, a'_k, N a k ′ , a k ′ , N , let c , d ∈ R c,d\in\mathbb R c , d ∈ R . wlog, assume M ≥ N M\geq N M ≥ N , extend a k ′ , b k ′ = 0. ∀ k > N a'_k, b'_k = 0. \forall k > N a k ′ , b k ′ = 0.∀ k > N
(linearity) c a 0 + d a 0 ′ + ∑ ( c a k + d a k ′ ) cos ( k n ) + ∑ ( c b k + d b k ′ ) sin ( k n ) ∈ A t r i g ca_0 + da'_0 + \sum (ca_k + da'_k)\cos(kn) + \sum(cb_k + db'_k)\sin(kn)\in \mathcal A_{trig} c a 0 + d a 0 ′ + ∑ ( c a k + d a k ′ ) cos ( kn ) + ∑ ( c b k + d b k ′ ) sin ( kn ) ∈ A t r i g
(product) Using half angle formula cos ( a ) cos ( b ) = 1 2 c o s ( a + b ) + c o s ( a − b ) \cos(a)\cos(b) = \frac{1}{2}cos(a+b) + cos(a-b) cos ( a ) cos ( b ) = 2 1 cos ( a + b ) + cos ( a − b ) and other similar ones, we can break all the products of trig functions back to a sum, hence rearrange the summation coefficients.
(vanish nowhere) For any a 0 + ∑ a k cos ( p n ) + ∑ b k sin ( p n ) = 0 a_0 + \sum a_k\cos(pn) + \sum b_k\sin(pn) = 0 a 0 + ∑ a k cos ( p n ) + ∑ b k sin ( p n ) = 0 , take a 0 ′ = a 0 + 1 a_0' = a_0 + 1 a 0 ′ = a 0 + 1 and others remain unchanged.
(separates points) Take a ≠ b ∈ [ − π , π ] a\neq b\in[-\pi,\pi] a = b ∈ [ − π , π ] . Using periodicity of trig functions If a ≠ − b . cos ( a ) ≠ c o s ( b ) a\neq -b. \cos(a)\neq cos(b) a = − b . cos ( a ) = cos ( b ) , if a = − b . sin ( a ) ≠ [ s i n ( − a ) = sin ( b ) ] a = -b. \sin(a)\neq [sin(-a) = \sin(b)] a = − b . sin ( a ) = [ s in ( − a ) = sin ( b )]
Therefore, we can apply SWT
January 11, 2025 January 9, 2023