Skip to content

Extra. Stone Weierstrass Theorem

Def'n. Function Algebra

For AC([a,b])\mathcal A\subset C([a,b]), that follows

  • (linearity) f,gA.a,bR.af+bgA\forall f,g\in \mathcal A. \forall a,b\in\mathbb R. af + bg\in \mathcal A
  • (closed under product) f,gA.fgA\forall f,g\in\mathcal A. f\cdot g\in \mathcal A

Thrm 1.

For AC([a,b])\mathcal A\subset C([a,b]) be a function algebra,
IF

  • (vanishes nowhere) p[a,b].fA.f(p)0\forall p\in [a,b]. \exists f\in \mathcal A. f(p)\neq 0
  • (separates points) xy[a,b].hA.h(x)h(y)\forall x\neq y \in [a,b]. \exists h\in\mathcal A. h(x)\neq h(y)

THEN A\mathcal A is dense in C[a,b]C[a,b], i.e. fC[a,b].{fn}A.{fn}u.c.f\forall f\in C[a,b]. \exists \{f_n\}\in \mathcal A. \{f_n\}\rightarrow^{u.c.} f

Thrm 2.

Atrig:={a0+k=1Nakcos(kn)+k=1Nbksin(kn)ak,bkR.NN}\mathcal A_{trig}:= \{a_0 + \sum_{k=1}^N a_k\cos(kn) + \sum_{k=1}^N b_k \sin(kn) | a_k, b_k\in\mathbb R. N\in\mathbb N\} is dense in C[π,π]C[-\pi, \pi]

proof. Consider the assumptions of SWT
Let ff have coefficients ak,bk,Ma_k, b_k, M, gg have ak,ak,Na'_k, a'_k, N, let c,dRc,d\in\mathbb R. wlog, assume MNM\geq N, extend ak,bk=0.k>Na'_k, b'_k = 0. \forall k > N

(linearity) ca0+da0+(cak+dak)cos(kn)+(cbk+dbk)sin(kn)Atrigca_0 + da'_0 + \sum (ca_k + da'_k)\cos(kn) + \sum(cb_k + db'_k)\sin(kn)\in \mathcal A_{trig}

(product) Using half angle formula cos(a)cos(b)=12cos(a+b)+cos(ab)\cos(a)\cos(b) = \frac{1}{2}cos(a+b) + cos(a-b) and other similar ones, we can break all the products of trig functions back to a sum, hence rearrange the summation coefficients.

(vanish nowhere) For any a0+akcos(pn)+bksin(pn)=0a_0 + \sum a_k\cos(pn) + \sum b_k\sin(pn) = 0, take a0=a0+1a_0' = a_0 + 1 and others remain unchanged.

(separates points) Take ab[π,π]a\neq b\in[-\pi,\pi]. Using periodicity of trig functions
If ab.cos(a)cos(b)a\neq -b. \cos(a)\neq cos(b), if a=b.sin(a)[sin(a)=sin(b)]a = -b. \sin(a)\neq [sin(-a) = \sin(b)]

Therefore, we can apply SWT