Jordon's Lemma
Claim 1
If zf(z)→unif.0 as z→∞, then
R→∞lim∫C(R,0,π)f(z)dz=0 where C(R,0,π) is the top semicircle arc of radius R centered at 0, rotated ccw.
proof. Note that on the arc, ∣z∣=R so that ∣zf(z)∣=R∣f(z)∣≤κ(R) so that ∣f(z)∣≤Rκ(R).
Let ϵ>0. By definition of κ, take S s.t. ∀R>S.κ(R)<πϵ. Then, with ML inequality we have
∣∫C(R,0,π)f(z)dz∣≤πRRκ(R)<ϵ Example 1
Compute ∫−∞∞(x2+1)−1dx
For any R>0, expanding f to the complex domain, and consider
$$\int_{C} \frac{1}{z^2 + 1}dz = 2\pi i Res(f, i) = 2\pi i \frac{1}{2 i} = \pi $$ Also we have
∫Cf(z)dz=∫CRlinef(z)dz+∫C(R,0,π)f(z)dz Therefore, we can write
R→∞lim∫Cz2+11dz=R→∞lim∫CRlinef(z)dz+R→∞lim∫C(R,0,π)f(z)dz=π Consider the latter term, because zf(z)=z2+1z→unif0 as z→∞, so that limR→∞∫C(R,0,π)f(z)dz=0 Note that
R→∞lim∫CRlinef(z)dz=R→∞lim∫−RRf(x)dx=∫−∞∞f(x)dx so that
π=∫−∞∞x2+11dx+0 Jordon's Lemma
IF f(z)→unif0 as z→∞ and k>0 then
R→∞lim∫C(R,0,π)eikzf(z)dz=R→∞lim∫C(R,−π,0)eikzf(z)dz=0 proof. parameterize C(R,0,π) with c(t):[0,π]→C,c(t)=Reit
IR:=∣∫C(R,0,π)eikzf(z)dz∣=∣∫0πeikReitf(Reit)iReitdt∣=R∣∫0πekR(icost−sint)f(Reit)ieitdt∣≤R∫0π∣ekR(icost)∣e−kRsint∣∣ieit∣∣f(Reit)∣dt=R∫0πe−kRsint∣f(Reit)∣dt≤Rκ(R)∫0πe−kRsintdt=Rκ(R)2∫0π/2e−kRsintdt≤Rκ(R)2∫0π/2e−kRπ2tdt=2Rκ(R)2Rkπ(1−e−πR)≤kπκ(R)sint≥π2t.∀t∈[0,π/2] Since limR→∞κ(R)=0,limR→∞∣IR∣=0
The proof for the second equation is similar
Example
∫−∞∞x2+1cosx
First, expand to complex domain,
z2+1cosz=21x2+1eiz+21x2+1e−iz Let f1(z)=x2+1eiz,f2(z)=x2+1e−iz. We can compute f1 on the top semicircle, and f2 on the bottom semicircle.
R→∞lim∮Cf1(z)dzRes(f1,i)2πiz→ilimz+ieizeπ=R→∞lim∫CRlinef1(z)dz+R→∞lim∫C(R,0,π)f1(z)dz=∫−∞∞x2+1eizdx+R→∞lim∫C(R,0,π)eizx2+11dz=∫−∞∞x2+1eizdx+0=∫−∞∞x2+1eizdxJordon’s Lemma Simiarly,
R→∞lim∮Cf2(z)dzRes(f2,−i)2πiz→−ilimz−ie−izeπ=R→∞lim∫−CRlinef2(z)dz+R→∞lim∫C(R,−π,0)f2(z)dz=−∫−∞∞x2+1e−izdx+R→∞lim∫C(R,−π,0)e−izx2+11dz=−∫−∞∞x2+1e−izdx+0=∫−∞∞x2+1e−izdxJordon’s Lemma Therefore,
z2+1cosz=21(2eπ)=eπ Another convinient way is to notice
∫−∞∞x2+1eixdx=∫−∞∞x2+1cosxdx+i∫−∞∞x2+1sinxdx Because x2+1sinx is odd around 0, ∫−∞∞x2+1sinxdx=0 and we are left with
eπ=∫−∞∞x2+1eixdx=∫−∞∞x2+1cosxdx