Real Number Construction Decimal expansion Given r ∈ R + r\in\mathbb{R}^+ r ∈ R +
find q ∈ N + , q ≤ r ≤ q + 1 q\in\mathbb{N}^+, q\leq r\le q+1 q ∈ N + , q ≤ r ≤ q + 1 So we find next decimal place d 1 / 10 ≤ r − q < d 1 / 10 + 1 / 10 d_1/10 \leq r- q < d_1 / 10 + 1/10 d 1 /10 ≤ r − q < d 1 /10 + 1/10 repeat d k 1 0 k ≤ r − q − ∑ 1 k − 1 d m 1 0 m < d k 1 0 k + 1 0 − k \frac{d_k}{10^k} \leq r - q - \sum _1^{k-1} \frac{d^m}{10^m} < \frac{d_k}{10^k} + 10^{-k} 1 0 k d k ≤ r − q − ∑ 1 k − 1 1 0 m d m < 1 0 k d k + 1 0 − k So that r = q . d 1 d 2 d 3 . . . r = q.d_1d_2d_3... r = q . d 1 d 2 d 3 ...
Def'n . Terminating and repeating terminating decimal expansion q . d 1 d 2 . . . d m 0 q.d_1d_2...d_{m_0} q . d 1 d 2 ... d m 0 repeating decimal expansion q . d 1 . . . d k d k + 1 . . . d n ‾ q.d_1...d_k\overline{d_{k+1}...d_n} q . d 1 ... d k d k + 1 ... d n (ex. 1 / 35 = 0.0287154 287154 ‾ 1/35 = 0.0287154\overline{287154} 1/35 = 0.0287154 287154 )
Thrm. 1 Claim ∀ x ∈ R + \forall x\in \mathbb{R}^+ ∀ x ∈ R + is rational IFF x x x has a decimal expansion that is either terminating or repeating
proof . ⇐ \Leftarrow ⇐ Assume x x x is terminating,
x = q . d 1 . . . d n 0 = q + ∑ 1 n d m 1 0 m ∈ Q x = q.d_1...d_{n_0} = q + \sum_1^n \frac{d_m}{10^m} \in \mathbb{Q} x = q . d 1 ... d n 0 = q + 1 ∑ n 1 0 m d m ∈ Q Assume x x x is repeating,
q . d 1 . . . d k d k + 1 . . . d m ‾ q.d_1...d_k\overline{d_{k+1}...d_m} q . d 1 ... d k d k + 1 ... d m Known that d 1 . . . d k d_1...d_k d 1 ... d k part is rational, the remaining 0.0...0 d k + 1 . . . d m ‾ 0.0...0\overline{d_{k+1}...d_m} 0.0...0 d k + 1 ... d m equals
1 0 − k ( ∑ m = 1 n ∑ l = 0 ∞ d m ′ 1 0 n l + m ) 10^{-k}(\sum_{m=1}^n \sum_{l=0}^\infty \frac{d'_m}{10^{nl + m}}) 1 0 − k ( m = 1 ∑ n l = 0 ∑ ∞ 1 0 n l + m d m ′ ) since the number is repeating, we denote d 0 ′ , . . . , d n ′ d'_0,...,d'_n d 0 ′ , ... , d n ′ be the repeated digits
1 0 − k ∑ m = 1 n d m ′ 1 0 − m ( ∑ l = 0 ∞ 1 0 − n l ) 10^{-k}\sum_{m=1}^n d'_m 10^{-m} (\sum_{l=0}^\infty 10^{-nl}) 1 0 − k m = 1 ∑ n d m ′ 1 0 − m ( l = 0 ∑ ∞ 1 0 − n l ) Using geometeric series, we have
1 0 − k ∑ m = 1 n d m ′ 1 0 − m ( 1 − 1 0 − n ) − 1 = ∑ m = 1 n d m ′ 1 0 n 1 0 m + k ( 1 0 n − 1 ) 10^{-k}\sum_{m=1}^n d'_m 10^{-m} (1 - 10^{-n})^{-1} = \sum_{m=1}^n\frac{d'_m 10^n}{10^{m+k}(10^n - 1)} 1 0 − k m = 1 ∑ n d m ′ 1 0 − m ( 1 − 1 0 − n ) − 1 = m = 1 ∑ n 1 0 m + k ( 1 0 n − 1 ) d m ′ 1 0 n ⇒ \Rightarrow ⇒ Take l , m ∈ Z + , x = l / m l, m \in\mathbb{Z}^+, x = l/m l , m ∈ Z + , x = l / m . By Euclidean division, l = d 0 m + r 0 / m l = d_0m + r_0/m l = d 0 m + r 0 / m where d 0 ∈ Z + d_0\in\mathbb{Z}^+ d 0 ∈ Z + is the quotient, r 0 ∈ Z + r_0\in\mathbb{Z}^+ r 0 ∈ Z + is the remainder, r 0 < m r_0<m r 0 < m .
Lemma 2 ∀ n ∈ N . l / m = ∑ m = 0 n d m 1 0 m + r n 1 0 n m \forall n\in \mathbb{N}. l/m = \sum_{m=0}^n \frac{d_m}{ 10^{m}} + \frac{r_n} {10^{n}m} ∀ n ∈ N . l / m = m = 0 ∑ n 1 0 m d m + 1 0 n m r n proof . (induction by further Euclidean division)
Suppose ∃ i , r i = 0 \exists i, r_i = 0 ∃ i , r i = 0 , then is terminated Suppose ∀ k \forall k ∀ k WTS repeating.
since r k r_k r k is a remainder, it can only choose from r k ∈ { 1 , . . . , m − 1 } r_k \in \{1, ..., m - 1\} r k ∈ { 1 , ... , m − 1 } . Then ∃ k 1 , k 2 . r k 1 = r k 2 \exists k_1, k_2. r_{k_1} = r_{k_2} ∃ k 1 , k 2 . r k 1 = r k 2 . Then by uniqueness of Euclidean division, it is repeated.
Def'n. Irrational Numbers x x x is irrational if x ∈ Q c x\in\mathbb{Q}^c x ∈ Q c , i.e. ∄ l , m ∈ Z + s . t . x = l / m \not\exists l, m\in\mathbb{Z}^+ s.t. x = l/m ∃ l , m ∈ Z + s . t . x = l / m
Claim 3 ∀ x , y ∈ R , x < y ⇒ ∃ r ∈ R . x < r < y \forall x, y \in \mathbb{R}, x < y \Rightarrow \exists r\in\mathbb{R}. x < r < y ∀ x , y ∈ R , x < y ⇒ ∃ r ∈ R . x < r < y and r r r is terminating.
proof . consider the decimal expansions of x = x 0 . x 1 . . . , y = y 0 . y 1 . . . x = x_0.x_1..., y = y_0.y_1... x = x 0 . x 1 ... , y = y 0 . y 1 ... , then exists the smallest k k k where x k + 1 ≤ y k x_k + 1 \leq y_k x k + 1 ≤ y k , then find the next m > k m>k m > k where x m ≠ 9 x_m \neq 9 x m = 9 . Then construct r = x 0 . x 1 . . . [ x m + 1 ] y m + 1 y m + 2 . . . r = x_0.x_1...[x_m + 1]y_{m+1}y_{m+2}... r = x 0 . x 1 ... [ x m + 1 ] y m + 1 y m + 2 ...
Construction From Cauchy Sequence Consider the space of Cauchy sequence C Q = { ( y n ) : y n ∈ Q } C_Q = \{(y_n): y_n\in \mathbb{Q}\} C Q = {( y n ) : y n ∈ Q }
x n , y n x_n, y_n x n , y n Cauchy, then
Proposition 1 x n + y n x_n + y_n x n + y n Cauchy. proof. Let ϵ > 0 , N ϵ = max ( N ϵ / 2 x , N ϵ / 2 y ) \epsilon > 0, N_\epsilon = \max(N^x_{\epsilon/2}, N^y_{\epsilon/2}) ϵ > 0 , N ϵ = max ( N ϵ /2 x , N ϵ /2 y )
Proposition 2 x n y n x_ny_n x n y n Cauchy proof.
∣ x n y n − x m y m ∣ = ∣ x n y m − x m y n + x m y n − x m y m ∣ ≤ ∣ y n ( x n − x m ) ∣ + ∣ x m ( y n − y m ) ∣ ≤ B 2 ∣ x n − x m ∣ B 1 ∣ y n − y m ∣ Cauchy implies bounded \begin{align*} |x_ny_n - x_my_m| &= |x_ny_m - x_my_n + x_my_n - x_my_m| \\ &\leq |y_n(x_n-x_m)| + |x_m(y_n - y_m)|\\ &\leq B_2|x_n - x_m| B_1|y_n - y_m| &\text{Cauchy implies bounded}\\ \end{align*} ∣ x n y n − x m y m ∣ = ∣ x n y m − x m y n + x m y n − x m y m ∣ ≤ ∣ y n ( x n − x m ) ∣ + ∣ x m ( y n − y m ) ∣ ≤ B 2 ∣ x n − x m ∣ B 1 ∣ y n − y m ∣ Cauchy implies bounded Want this to be less than ϵ > 0 \epsilon > 0 ϵ > 0 . Therefore, take ∣ x n − x m ∣ ≤ ϵ / 2 B 2 , ∣ y n − y m ∣ ≤ ϵ / 2 B 1 |x_n - x_m| \leq \epsilon / 2B_2, |y_n - y_m|\leq \epsilon/2B_1 ∣ x n − x m ∣ ≤ ϵ /2 B 2 , ∣ y n − y m ∣ ≤ ϵ /2 B 1
Proposition 3 Additive identity r 0 = ( 0 , 0 , 0 , . . . ) r_0=(0,0,0,...) r 0 = ( 0 , 0 , 0 , ... ) , multiplicative identity r 1 = ( 1 , 1 , 1 , . . . ) r_1 = (1,1,1,...) r 1 = ( 1 , 1 , 1 , ... )
a + r o = { a 1 + 0 , a 2 + 0 , . . . } = { a n } = a a+r_o = \{a_1 + 0, a_2 + 0,...\}=\{a_n\} = a a + r o = { a 1 + 0 , a 2 + 0 , ... } = { a n } = a a r 1 = { a 1 1 , a 2 1 , . . . } = { a n } = a ar_1 = \{a_11, a_21,...\} = \{a_n\} = a a r 1 = { a 1 1 , a 2 1 , ... } = { a n } = a Def'n. Equivalence Class ( x n ) ∼ ( y n ) (x_n)\sim (y_n) ( x n ) ∼ ( y n ) IFF lim n → ∞ ∣ x n − y n ∣ = 0 \lim_{n\rightarrow \infty}|x_n -y_n| = 0 lim n → ∞ ∣ x n − y n ∣ = 0
Example x n = 1 / n , y n = 0 x_n = 1/n, y_n = 0 x n = 1/ n , y n = 0
Example Let π = p 0 . p 1 p 2 . . . \pi=p_0.p_1p_2... π = p 0 . p 1 p 2 ... , take x n = p 0 . p 1 . . . p n , y n = p 0 . p 1 . . . p n 1 = x n + 1 0 − ( n + 1 ) x_n = p_0.p_1...p_n, y_n = p_0.p_1...p_n1 = x_n + 10^{-(n+1)} x n = p 0 . p 1 ... p n , y n = p 0 . p 1 ... p n 1 = x n + 1 0 − ( n + 1 ) .
Let R : = \mathbb{R}:= R := equivalence class on C Q C_Q C Q , so for any x ∈ R x\in\mathbb{R} x ∈ R you can find a Cauchy sequence ( x n ) (x_n) ( x n ) in Q \mathbb{Q} Q s.t. lim n → ∞ ∣ x n − x ∣ = 0 \lim_{n\rightarrow\infty}|x_n - x| = 0 lim n → ∞ ∣ x n − x ∣ = 0
January 11, 2025 January 9, 2023