Skip to content

Real Number Construction

Decimal expansion

Given rR+r\in\mathbb{R}^+

  1. find qN+,qrq+1q\in\mathbb{N}^+, q\leq r\le q+1
  2. So we find next decimal place d1/10rq<d1/10+1/10d_1/10 \leq r- q < d_1 / 10 + 1/10
  3. repeat dk10krq1k1dm10m<dk10k+10k\frac{d_k}{10^k} \leq r - q - \sum _1^{k-1} \frac{d^m}{10^m} < \frac{d_k}{10^k} + 10^{-k}

So that r=q.d1d2d3...r = q.d_1d_2d_3...

Def'n. Terminating and repeating

terminating decimal expansion q.d1d2...dm0q.d_1d_2...d_{m_0}
repeating decimal expansion q.d1...dkdk+1...dnq.d_1...d_k\overline{d_{k+1}...d_n}(ex. 1/35=0.02871542871541/35 = 0.0287154\overline{287154})

Thrm. 1

Claim xR+\forall x\in \mathbb{R}^+ is rational IFF xx has a decimal expansion that is either terminating or repeating

proof.
\Leftarrow
Assume xx is terminating,

x=q.d1...dn0=q+1ndm10mQx = q.d_1...d_{n_0} = q + \sum_1^n \frac{d_m}{10^m} \in \mathbb{Q}

Assume xx is repeating,

q.d1...dkdk+1...dmq.d_1...d_k\overline{d_{k+1}...d_m}

Known that d1...dkd_1...d_k part is rational, the remaining 0.0...0dk+1...dm0.0...0\overline{d_{k+1}...d_m} equals

10k(m=1nl=0dm10nl+m)10^{-k}(\sum_{m=1}^n \sum_{l=0}^\infty \frac{d'_m}{10^{nl + m}})

since the number is repeating, we denote d0,...,dnd'_0,...,d'_n be the repeated digits

10km=1ndm10m(l=010nl)10^{-k}\sum_{m=1}^n d'_m 10^{-m} (\sum_{l=0}^\infty 10^{-nl})

Using geometeric series, we have

10km=1ndm10m(110n)1=m=1ndm10n10m+k(10n1)10^{-k}\sum_{m=1}^n d'_m 10^{-m} (1 - 10^{-n})^{-1} = \sum_{m=1}^n\frac{d'_m 10^n}{10^{m+k}(10^n - 1)}

\Rightarrow
Take l,mZ+x=l/ml, m \in\mathbb{Z}^+, x = l/m.
By Euclidean division, l=d0m+r0/ml = d_0m + r_0/m where d0Z+d_0\in\mathbb{Z}^+ is the quotient, r0Z+r_0\in\mathbb{Z}^+ is the remainder, r0<mr_0<m.

Lemma 2

nN.l/m=m=0ndm10m+rn10nm\forall n\in \mathbb{N}. l/m = \sum_{m=0}^n \frac{d_m}{ 10^{m}} + \frac{r_n} {10^{n}m}

proof. (induction by further Euclidean division)

Suppose i,ri=0\exists i, r_i = 0, then is terminated
Suppose k\forall k WTS repeating.

  • since rkr_k is a remainder, it can only choose from rk{1,...,m1}r_k \in \{1, ..., m - 1\}. Then k1,k2.rk1=rk2\exists k_1, k_2. r_{k_1} = r_{k_2}.

Then by uniqueness of Euclidean division, it is repeated.

Def'n. Irrational Numbers

xx is irrational if xQcx\in\mathbb{Q}^c, i.e. ∄l,mZ+s.t.x=l/m\not\exists l, m\in\mathbb{Z}^+ s.t. x = l/m

Claim 3

x,yR,x<yrR.x<r<y\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists r\in\mathbb{R}. x < r < y and rr is terminating.

proof. consider the decimal expansions of x=x0.x1...,y=y0.y1...x = x_0.x_1..., y = y_0.y_1..., then exists the smallest kk where xk+1ykx_k + 1 \leq y_k, then find the next m>km>k where xm9x_m \neq 9. Then construct r=x0.x1...[xm+1]ym+1ym+2...r = x_0.x_1...[x_m + 1]y_{m+1}y_{m+2}...

Construction From Cauchy Sequence

Consider the space of Cauchy sequence CQ={(yn):ynQ}C_Q = \{(y_n): y_n\in \mathbb{Q}\}

xn,ynx_n, y_n Cauchy, then

Proposition 1 xn+ynx_n + y_n Cauchy.
proof. Let ϵ>0,Nϵ=max(Nϵ/2x,Nϵ/2y)\epsilon > 0, N_\epsilon = \max(N^x_{\epsilon/2}, N^y_{\epsilon/2})

Proposition 2 xnynx_ny_n Cauchy
proof.

xnynxmym=xnymxmyn+xmynxmymyn(xnxm)+xm(ynym)B2xnxmB1ynymCauchy implies bounded\begin{align*} |x_ny_n - x_my_m| &= |x_ny_m - x_my_n + x_my_n - x_my_m| \\ &\leq |y_n(x_n-x_m)| + |x_m(y_n - y_m)|\\ &\leq B_2|x_n - x_m| B_1|y_n - y_m| &\text{Cauchy implies bounded}\\ \end{align*}

Want this to be less than ϵ>0\epsilon > 0. Therefore, take xnxmϵ/2B2,ynymϵ/2B1|x_n - x_m| \leq \epsilon / 2B_2, |y_n - y_m|\leq \epsilon/2B_1

Proposition 3 Additive identity r0=(0,0,0,...)r_0=(0,0,0,...), multiplicative identity r1=(1,1,1,...)r_1 = (1,1,1,...)

a+ro={a1+0,a2+0,...}={an}=aa+r_o = \{a_1 + 0, a_2 + 0,...\}=\{a_n\} = a
ar1={a11,a21,...}={an}=aar_1 = \{a_11, a_21,...\} = \{a_n\} = a

Def'n. Equivalence Class

(xn)(yn)(x_n)\sim (y_n) IFF limnxnyn=0\lim_{n\rightarrow \infty}|x_n -y_n| = 0

Example xn=1/n,yn=0x_n = 1/n, y_n = 0

Example Let π=p0.p1p2...\pi=p_0.p_1p_2..., take xn=p0.p1...pn,yn=p0.p1...pn1=xn+10(n+1)x_n = p_0.p_1...p_n, y_n = p_0.p_1...p_n1 = x_n + 10^{-(n+1)}.

Let R:=\mathbb{R}:=equivalence class on CQC_Q, so for any xRx\in\mathbb{R} you can find a Cauchy sequence (xn)(x_n) in Q\mathbb{Q} s.t. limnxnx=0\lim_{n\rightarrow\infty}|x_n - x| = 0