Inner Product Space and Fourier Series Inner Products Spaces An inner product ⟨ ⋅ , ⋅ ⟩ : V → R \langle \cdot, \cdot\rangle :V\rightarrow \mathbb R ⟨ ⋅ , ⋅ ⟩ : V → R is a function that satisfies
positive definite ⟨ x , x ⟩ > 0 \langle x,x\rangle > 0 ⟨ x , x ⟩ > 0 and ⟨ x , x ⟩ = 0 \langle x,x\rangle =0 ⟨ x , x ⟩ = 0 IFF x ≡ 0 x\equiv0 x ≡ 0 symmetry ⟨ x , y ⟩ = ⟨ y , x ⟩ \langle x,y\rangle =\langle y,x\rangle ⟨ x , y ⟩ = ⟨ y , x ⟩ bilinear ⟨ a x + c y , z ⟩ = a ⟨ x , z ⟩ + c ⟨ y , z ⟩ \langle ax+cy,z\rangle =a\langle x,z\rangle +c\langle y,z\rangle ⟨ a x + cy , z ⟩ = a ⟨ x , z ⟩ + c ⟨ y , z ⟩ Example 1 On R n , x ⋅ y = ∑ 1 n x i y i \mathbb R^n, x\cdot y = \sum_1^n x_i y_i R n , x ⋅ y = ∑ 1 n x i y i
x ⋅ x = ∑ n x i 2 ≥ 0 x\cdot x =\sum^n x_i^2 \geq 0 x ⋅ x = ∑ n x i 2 ≥ 0 x ⋅ y = ∑ x i y i = ∑ y i x i = y ⋅ x x\cdot y = \sum x_i y_i = \sum y_i x_i = y\cdot x x ⋅ y = ∑ x i y i = ∑ y i x i = y ⋅ x ( a x + c y ) ⋅ z = ∑ ( a x i + c y i ) z i = a ∑ x i z i + c ∑ y i z i = a x ⋅ z + c y ⋅ z (ax+cy)\cdot z = \sum (ax_i + cy_i) z_i = a\sum x_i z_i + c\sum y_i z_i = ax\cdot z + cy\cdot z ( a x + cy ) ⋅ z = ∑ ( a x i + c y i ) z i = a ∑ x i z i + c ∑ y i z i = a x ⋅ z + cy ⋅ z Example 2 Let A n × n A_{n\times n} A n × n be a positive definite symmetric matrix, i.e. all its eigenvalues are strictly positive. Then ⟨ x ⋅ y ⟩ A = x A y T \langle x\cdot y\rangle _A = x A y^T ⟨ x ⋅ y ⟩ A = x A y T is an inner product on R n \mathbb R^n R n
Note that such A A A can be diagonalized into A = P D P T A=PDP^T A = P D P T
⟨ x , x ⟩ A = x A x T = x P D P x T = v D v T = ∑ v k 2 λ k ⟩ 0 \langle x,x\rangle _A = xAx^T = xPDPx^T = vDv^T = \sum v_k^2 \lambda_k \rangle 0 ⟨ x , x ⟩ A = x A x T = x P D P x T = v D v T = ∑ v k 2 λ k ⟩ 0 (since A A A is definite, λ k ⟩ 0 \lambda_k \rangle 0 λ k ⟩ 0 ) ⟨ x , x ⟩ = 0 \langle x,x\rangle =0 ⟨ x , x ⟩ = 0 IFF ∑ v k 2 λ k = 0 ⇒ v k = 0 ⇒ x P = 0 \sum v_k^2 \lambda_k = 0\Rightarrow v_k = 0 \Rightarrow xP = 0 ∑ v k 2 λ k = 0 ⇒ v k = 0 ⇒ x P = 0 , since P P P is orthogonal, x = 0 x=0 x = 0 Thrm 1 . Cauchy Schwarz inequality For x , y ∈ ( V , ⟨ , ⟩ ) , ∣ ⟨ x , y ⟩ ∣ ≤ ⟨ x , x ⟩ 2 ⟨ y , y ⟩ 2 x,y\in (V,\langle ,\rangle ), |\langle x,y\rangle |\leq \langle x,x\rangle ^2\langle y,y\rangle ^2 x , y ∈ ( V , ⟨ , ⟩) , ∣ ⟨ x , y ⟩ ∣ ≤ ⟨ x , x ⟩ 2 ⟨ y , y ⟩ 2
proof . By positive definite, for t ∈ R t\in\mathbb R t ∈ R , ⟨ x − t y , x − t y ⟩ ≥ 0 \langle x-ty, x-ty\rangle \geq 0 ⟨ x − t y , x − t y ⟩ ≥ 0 . Take t = ⟨ x , y ⟩ y , y t = \frac{\langle x,y\rangle }{y,y} t = y , y ⟨ x , y ⟩ ,
⟨ x , x ⟩ − 2 t ∣ ⟨ x , y ⟩ ∣ + t 2 ⟨ y , y ⟩ = ⟨ x , x ⟩ − 2 ⟨ x , y ⟩ 2 ⟨ y , y ⟩ + ⟨ x , y ⟩ 2 ⟨ y , y ⟩ = ⟨ x , x ⟩ − ⟨ x , y ⟩ 2 ⟨ x , y ⟩ ≥ 0 ⟹ ⟨ x , y ⟩ 2 ≤ ⟨ x , x ⟩ ⟨ y , y ⟩ \begin{align*} \langle x,x\rangle - 2t |\langle x,y\rangle | + t^2 \langle y,y\rangle &= \langle x,x\rangle - 2\frac{\langle x,y\rangle ^2}{\langle y,y\rangle} + \frac{\langle x,y\rangle ^2}{\langle y,y\rangle }\\ =&\langle x,x\rangle - \frac{\langle x,y\rangle ^2}{\langle x,y\rangle } \geq 0\\ \implies &\langle x,y\rangle ^2 \leq \langle x,x\rangle \langle y,y\rangle\\ \end{align*} ⟨ x , x ⟩ − 2 t ∣ ⟨ x , y ⟩ ∣ + t 2 ⟨ y , y ⟩ = ⟹ = ⟨ x , x ⟩ − 2 ⟨ y , y ⟩ ⟨ x , y ⟩ 2 + ⟨ y , y ⟩ ⟨ x , y ⟩ 2 ⟨ x , x ⟩ − ⟨ x , y ⟩ ⟨ x , y ⟩ 2 ≥ 0 ⟨ x , y ⟩ 2 ≤ ⟨ x , x ⟩ ⟨ y , y ⟩ Example 3 Over C [ a , b ] C[a,b] C [ a , b ] , ⟨ f , g ⟩ L 2 = ∫ a b f g d x \langle f,g\rangle _{L^2} = \int_a^b f g dx ⟨ f , g ⟩ L 2 = ∫ a b f g d x
⟨ f , f ⟩ L 2 = ∫ a b f 2 d x ≥ 0 \langle f,f\rangle _{L^2} = \int_a^b f^2 dx \geq 0 ⟨ f , f ⟩ L 2 = ∫ a b f 2 d x ≥ 0 ⟨ f , f ⟩ L 2 = 0 \langle f,f\rangle _{L^2}=0 ⟨ f , f ⟩ L 2 = 0 IFF ∫ a b ∣ f ∣ 2 d x = 0 \int_a^b |f|^2 dx = 0 ∫ a b ∣ f ∣ 2 d x = 0 IFF f ( x ) = 0 f(x)=0 f ( x ) = 0 because f f f is continuous. Assume f ( x 0 ) > 0 f(x_0) > 0 f ( x 0 ) > 0 , then by continuity, take I δ ( x 0 ) : = [ x 0 − δ , x 0 + δ ] , ∀ x ∈ I δ ( x 0 ) . f ( x ) > ϵ > 0 I_\delta(x_0):=[x_0-\delta, x_0+\delta], \forall x\in I_\delta(x_0). f(x) > \epsilon > 0 I δ ( x 0 ) := [ x 0 − δ , x 0 + δ ] , ∀ x ∈ I δ ( x 0 ) . f ( x ) > ϵ > 0 so that ∫ a b ∣ f ∣ 2 d x > ∫ I δ ( x 0 ) ∣ f ( x ) ∣ 2 d x > ϵ 2 \int_a^b |f|^2 dx > \int_{I_\delta(x_0)} |f(x)|^2 dx > \epsilon^2 ∫ a b ∣ f ∣ 2 d x > ∫ I δ ( x 0 ) ∣ f ( x ) ∣ 2 d x > ϵ 2 contradicts with ⟨ f , f ⟩ L 2 = 0 \langle f,f\rangle _{L^2}=0 ⟨ f , f ⟩ L 2 = 0 (other details to be filled)
By Cauchy Schwartz inequality,
∫ f g ≤ ∫ f 2 ∫ g 2 ⟹ ⟨ f , g ⟩ L 2 ≤ ∥ f ∥ L 2 ∥ g ∥ L 2 ⟹ f ∈ L 2 ( [ a , b ] ) ⟹ f ∈ L 1 ( [ a , b ] ) \begin{align*} &\int fg\leq \sqrt{\int f^2}\sqrt{\int g^2}\\ \implies &\langle f,g\rangle _{L^2} \leq \|f\|_{L^2}\|g\|_{L^2}\\ \implies &f\in L^2([a,b])\\ \implies &f\in L^1([a,b])\\ \end{align*} ⟹ ⟹ ⟹ ∫ f g ≤ ∫ f 2 ∫ g 2 ⟨ f , g ⟩ L 2 ≤ ∥ f ∥ L 2 ∥ g ∥ L 2 f ∈ L 2 ([ a , b ]) f ∈ L 1 ([ a , b ]) Therefore, every inner product gives rise to a norm ∥ x ∥ v : = ⟨ x , x ⟩ \|x\|_v := \sqrt{\langle x,x\rangle } ∥ x ∥ v := ⟨ x , x ⟩
Def'n . Hilbert space a complete inner product space is called Hilbert space
Completeness over inner product space A inner product space is complete if every Cauchy sequence x n x_n x n has a limit in the space. i.e.
∥ x n − x ∥ V 2 = ⟨ x n − x , x n − x ⟩ → 0 \|x_n - x\|_V^2 = \langle x_n - x, x_n - x\rangle \rightarrow 0 ∥ x n − x ∥ V 2 = ⟨ x n − x , x n − x ⟩ → 0 L 2 ( [ a , b ] ) : = { f : [ a , b ] → R : ∫ a b ∣ f ∣ 2 ⟨ ∞ } L^2([a,b]):= \{f:[a,b]\rightarrow \mathbb R: \int_a^b |f|^2 \langle \infty\} L 2 ([ a , b ]) := { f : [ a , b ] → R : ∫ a b ∣ f ∣ 2 ⟨ ∞ } Remark The space S : = ( C [ a , b ] , ∥ ⋅ ∥ L 2 ) S:=(C[a,b], \|\cdot\|_{L^2}) S := ( C [ a , b ] , ∥ ⋅ ∥ L 2 ) is not complete, but L 2 ( [ a , b ] ) L^2([a,b]) L 2 ([ a , b ]) is the completion of S S S . which means taking any Cauchy sequence, then it has a limit in L 2 L^2 L 2 . In another words, continuous functions can approximate any square integrable function in L 2 L^2 L 2 -norm.
Thrm 2 . Monotone Convergence Theorem Take nonnegative f n ( x ) ≥ 0 f_n(x)\geq 0 f n ( x ) ≥ 0 , if f 1 ( x ) ≤ f 2 ( x ) ≤ ⋯ f_1(x)\leq f_2(x) \leq \cdots f 1 ( x ) ≤ f 2 ( x ) ≤ ⋯ then point-wise limit f n ( x ) → f ( x ) f_n(x)\rightarrow f(x) f n ( x ) → f ( x ) i.e. ∣ f n ( x ) − f ( x ) ∣ → 0 |f_n(x)-f(x)|\rightarrow 0 ∣ f n ( x ) − f ( x ) ∣ → 0
Corollary By MCT, lim ∫ f n = ∫ lim f n = ∫ f \lim \int f_n = \int \lim f_n = \int f lim ∫ f n = ∫ lim f n = ∫ f
Thrm 3 . Dominated/Integral Convergence Theorem If { h n } \{h_n\} { h n } satisfy
∣ h n ( x ) ∣ ≤ B ( x ) |h_n(x)|\leq B(x) ∣ h n ( x ) ∣ ≤ B ( x ) , which B B B is an integrable function h n ( x ) → point-wise h ( x ) h_n(x)\rightarrow^{\text{point-wise}} h(x) h n ( x ) → point-wise h ( x ) Then, lim ∫ f n = ∫ lim f n = ∫ f \lim \int f_n = \int \lim f_n = \int f lim ∫ f n = ∫ lim f n = ∫ f
Thrm 4. Completeness The space ( L 2 , ∥ ⋅ ∥ L 2 ) (L^2, \|\cdot\|_{L^2}) ( L 2 , ∥ ⋅ ∥ L 2 ) is complete
proof . Take Cauchy sequence f n ∈ L 2 ( [ a , b ] ) f_n \in L^2([a,b]) f n ∈ L 2 ([ a , b ]) . By Cauchy, take subsequence f n , k f_{n,k} f n , k s.t. ∥ f n , k − f n , k + 1 ∥ ≤ 2 − k \|f_{n,k} - f_{n,k+1}\| \leq 2^{-k} ∥ f n , k − f n , k + 1 ∥ ≤ 2 − k . Let f ( x ) : = f n , 1 ( x ) + ∑ ( f n , k + 1 − f n , k ( x ) ) f(x):=f_{n,1}(x) + \sum (f_{n, k+1} - f_{n,k}(x)) f ( x ) := f n , 1 ( x ) + ∑ ( f n , k + 1 − f n , k ( x )) . WTS f ∈ L 2 ( i ) f\in L^2 (i) f ∈ L 2 ( i ) , f n , k → L 2 f ( i i ) f_{n,k}\rightarrow^{L^2} f (ii) f n , k → L 2 f ( ii ) . Define g : = ∣ f n , 1 ∣ + ∑ ∣ f n , k + 1 − f n , k ∣ g:= |f_n,1| + \sum|f_{n,k+1}- f_{n,k}| g := ∣ f n , 1∣ + ∑ ∣ f n , k + 1 − f n , k ∣ , S M ( g ) = ∣ f n , 1 ∣ + ∑ M ∣ f n , k + 1 − f n , k ∣ S_M(g) = |f_n,1| + \sum^M|f_{n,k+1}- f_{n,k}| S M ( g ) = ∣ f n , 1∣ + ∑ M ∣ f n , k + 1 − f n , k ∣ , then f ≤ g , S M ( f ) ≤ S M ( g ) f\leq g, S_M(f) \leq S_M(g) f ≤ g , S M ( f ) ≤ S M ( g ) Apply MCT to { S M ( g ) } , 0 ≤ ∣ f n , 1 ∣ ≤ ∣ f n , 2 − f n , 1 ∣ ≤ . . . , S 1 ( g ) ≤ S 2 ( g ) ≤ S 3 ( g ) \{S_M(g)\}, 0\leq |f_{n,1}| \leq |f_{n,2}-f_{n,1}|\leq ..., S_1(g) \leq S_2(g) \leq S_3(g) { S M ( g )} , 0 ≤ ∣ f n , 1 ∣ ≤ ∣ f n , 2 − f n , 1 ∣ ≤ ... , S 1 ( g ) ≤ S 2 ( g ) ≤ S 3 ( g ) Then, WTS S M ( g ) → g ( x ) S_M(g)\rightarrow g(x) S M ( g ) → g ( x ) , which suffices to show that the sequence g g g converges, a.k.a. g ∈ L 2 g\in L^2 g ∈ L 2
∥ S M ( g ) ∥ L 2 ≤ ∥ f n , 1 ∥ L 2 + ∑ M ∥ f n , k + 1 − f n , k ∥ ≤ ∥ f n , 1 ∥ + ∑ M 2 − k tri. ineq. < ∞ \begin{align*} \|S_M(g)\|_{L^2} &\leq \|f_{n,1}\|_{}L^2 + \sum^M \|f_{n,k+1} - f_{n,k}\| \\ &\leq \|f_{n,1}\| + \sum^M 2^{-k} &\text{tri. ineq.}\\ &<\infty \end{align*} ∥ S M ( g ) ∥ L 2 ≤ ∥ f n , 1 ∥ L 2 + ∑ M ∥ f n , k + 1 − f n , k ∥ ≤ ∥ f n , 1 ∥ + ∑ M 2 − k < ∞ tri. ineq. Thus we have that
∫ ∣ g 2 ∣ d x = ∫ lim M → ∞ ∣ S M ( g ) 2 ∣ d x = lim n → ∞ ∫ ∣ S M ( g ) ∣ 2 d x MCT ≤ lim M → ∞ ∥ f n , 1 ∥ + ∑ M 2 − k ≤ ∥ f n , 1 ∥ + 2 < ∞ \begin{align*} \int |g^2| dx &= \int \lim_{M\rightarrow \infty} |S_M(g)^2|dx\\ &=\lim_{n\rightarrow\infty} \int |S_M(g)|^2 dx &\text{MCT}\\ &\leq \lim_{M\rightarrow \infty} \|f_{n,1}\| + \sum^M 2^{-k} \leq \|f_{n,1}\| + 2 \\ &< \infty \end{align*} ∫ ∣ g 2 ∣ d x = ∫ M → ∞ lim ∣ S M ( g ) 2 ∣ d x = n → ∞ lim ∫ ∣ S M ( g ) ∣ 2 d x ≤ M → ∞ lim ∥ f n , 1 ∥ + ∑ M 2 − k ≤ ∥ f n , 1 ∥ + 2 < ∞ MCT We have Cauchy seuqnce f n ∈ L 2 f_n \in L^2 f n ∈ L 2 , WTS ∥ f n − f ∥ L 2 → 0 \|f_n -f\|_{L^2}\rightarrow 0 ∥ f n − f ∥ L 2 → 0
(i) Since ∣ f ∣ ≤ g |f|\leq g ∣ f ∣ ≤ g and g ∈ L 2 , ∫ ∣ f ∣ 2 ≤ ∫ ∣ g ∣ 2 < ∞ ⟹ f ∈ L 2 g\in L^2, \int |f|^2 \leq \int |g|^2 < \infty\implies f\in L^2 g ∈ L 2 , ∫ ∣ f ∣ 2 ≤ ∫ ∣ g ∣ 2 < ∞ ⟹ f ∈ L 2
(ii) ∥ f n − f ∥ L 2 2 = ∫ ∣ f n − f ∣ 2 d x → 0 \|f_n - f\|_{L^2}^2 = \int |f_n - f|^2 dx\rightarrow 0 ∥ f n − f ∥ L 2 2 = ∫ ∣ f n − f ∣ 2 d x → 0 .
Let h k : = ∣ f n , k − f ∣ 2 h_k:=|f_{n,k}- f|^2 h k := ∣ f n , k − f ∣ 2 , then
h k ≤ ∣ S k ( g ) ∣ + ∣ g ∣ ≤ 2 ∣ g ∣ ∈ L 2 h_k \leq |S_k(g)| + |g| \leq 2|g|\in L^2 h k ≤ ∣ S k ( g ) ∣ + ∣ g ∣ ≤ 2∣ g ∣ ∈ L 2 so that f n , k → p.w. f f_{n,k}\rightarrow^{\text{p.w.}} f f n , k → p.w. f since g ∈ L 2 g\in L^2 g ∈ L 2 so lim k → ∞ f n , k ( x ) = f ( x ) \lim_{k\rightarrow \infty} f_{n,k}(x)=f(x) lim k → ∞ f n , k ( x ) = f ( x ) exists BY DCT, lim k → ∞ ∫ ∣ h k ∣ 2 = ∫ lim k → ∞ ∣ h k ∣ 2 = 0 \lim_{k\rightarrow \infty} \int |h_k|^2 = \int \lim_{k\rightarrow \infty} |h_k|^2 =0 lim k → ∞ ∫ ∣ h k ∣ 2 = ∫ lim k → ∞ ∣ h k ∣ 2 = 0 ,
Therefore, f n , k → L 2 f f_{n,k}\rightarrow^{L^2}f f n , k → L 2 f
Then, expansion f n , k f_{n,k} f n , k to f n f_n f n . i.e. f n → L 2 f f_n \rightarrow^{L^2} f f n → L 2 f . By Cauchy sequence of f n f_n f n , if the sub-sequence converges to some limit, so that the whole sequence will do so.
Fourier Series Def'n. Orthogonal Given x , y i n ( V , ⟨ ⋅ , ⋅ ⟩ ) x,y\ in (V,\langle\cdot, \cdot\rangle) x , y in ( V , ⟨ ⋅ , ⋅ ⟩) , x,y are orthogonal if ⟨ x , y ⟩ = 0 \langle x,y\rangle = 0 ⟨ x , y ⟩ = 0
Example x ∘ y = cos ( θ ) ∣ x ∣ ∣ y ∣ x\circ y = \cos(\theta) |x||y| x ∘ y = cos ( θ ) ∣ x ∣∣ y ∣ , so when θ = π / 2 , x ∘ y = 0 \theta = \pi /2, x\circ y = 0 θ = π /2 , x ∘ y = 0
Def'n. Orthogonal set A collection of { e k } \{e_k\} { e k } is called orthonormal if ⟨ e k , e m ⟩ = I ( k = m ) \langle e_k,e_m\rangle = \mathbb I(k=m) ⟨ e k , e m ⟩ = I ( k = m )
Thrm 4 . Every Hilbert space has orthonormal basis, i.e. ∀ x ∈ H . x = ∑ ∞ ⟨ x , e k ⟩ e k \forall x\in H. x = \sum^\infty \langle x,e_k\rangle e_k ∀ x ∈ H . x = ∑ ∞ ⟨ x , e k ⟩ e k
Example Take e k = ( 0 , . . . , 0 , 1 , 0 ) e_k = (0,...,0,1,0) e k = ( 0 , ... , 0 , 1 , 0 ) where 1 1 1 is at k k k th position, { e k } \{e_k\} { e k } is orthonormal set.
proof . e k ⋅ e m = ∑ n ( e k ) i ( e m ) i = 1 I ( k = m ) e_k \cdot e_m = \sum^n (e_k)_i (e_m)_i = 1\mathbb I(k=m) e k ⋅ e m = ∑ n ( e k ) i ( e m ) i = 1 I ( k = m )
Example { 1 , 2 cos ( n θ ) , 2 sin ( n θ ) } \{1, \sqrt2\cos(n\theta), \sqrt2\sin(n\theta)\} { 1 , 2 cos ( n θ ) , 2 sin ( n θ )} is orthogonal for ( C ( [ − π , π ] ) , ∥ ⋅ ∥ L 2 ) (C([-\pi, \pi]), \|\cdot\|_{L^2}) ( C ([ − π , π ]) , ∥ ⋅ ∥ L 2 )
proof . We have the followings hold
2 π ∫ − π π cos ( n θ ) cos ( k θ ) = 1 I ( n = k ) 2 π ∫ − π π sin ( n θ ) sin ( k θ ) = 1 I ( n = k ) 2 π ∫ − π π sin ( n θ ) cos ( k θ ) = 0 \begin{align*} &\frac{\sqrt2}{\pi}\int_{-\pi}^\pi \cos(n\theta)\cos(k\theta) = 1\mathbb I(n=k)\\ &\frac{\sqrt2}{\pi}\int_{-\pi}^\pi \sin(n\theta)\sin(k\theta) = 1\mathbb I(n=k)\\ &\frac{\sqrt2}{\pi}\int_{-\pi}^\pi \sin(n\theta)\cos(k\theta) = 0 \end{align*} π 2 ∫ − π π cos ( n θ ) cos ( k θ ) = 1 I ( n = k ) π 2 ∫ − π π sin ( n θ ) sin ( k θ ) = 1 I ( n = k ) π 2 ∫ − π π sin ( n θ ) cos ( k θ ) = 0 Def'n . Fourier Series For function f ∈ L 2 ( [ a , b ] ) f\in L^2([a,b]) f ∈ L 2 ([ a , b ]) , the Fourier series is defined to be
f ( x ) : = a 0 + ∑ a n cos ( n π x ) L + b n sin ( n π x ) L f(x):= a_0 + \sum a_n \frac{\cos(n\pi x)}{L} + b_n \frac{\sin(n\pi x)}{L} f ( x ) := a 0 + ∑ a n L cos ( nπ x ) + b n L sin ( nπ x ) where
a n = ⟨ f , cos ( n π x ) L ) ⟩ L 2 , b n = ⟨ f , sin ( n π x ) L ⟩ L 2 a_n = \langle f, \frac{\cos(n\pi x)}{L})\rangle _{L^2}, b_n = \langle f, \frac{\sin(n\pi x)}{L}\rangle _{L^2} a n = ⟨ f , L cos ( nπ x ) ) ⟩ L 2 , b n = ⟨ f , L sin ( nπ x ) ⟩ L 2 Thrm . Carleson Hunt Theorem If f ∈ L 2 ( [ − L , L ] ) f\in L^2([-L,L]) f ∈ L 2 ([ − L , L ]) , then f f f equals its Fourier series almost everywhere . almost everywhere outside a measure zero set
January 11, 2025 January 9, 2023