Skip to content

MCT and BWT

Monotone Convergence Theorem

Monotone increasing and bounded above \Rightarrow converges to supremum.

Def'n. Monotonic

A sequence (an)(a_n) is (strictly) monotone increasing if

anan+1(an<an+1),n1a_n\leq a_{n+1}(a_n<a_{n+1}), \forall n\geq 1

Thrm 1.

limnan=inf(an)\lim_{n\rightarrow\infty}a_n = \inf(a_n)

proof. We'd like to show that

ϵ.N.nN.anLϵ\forall \epsilon. \exists N. \forall n \geq N. |a_n - L| \leq \epsilon

Let L=inf(an)L=\inf(a_n). Let ϵ>0\epsilon > 0, take aN(an)a_N \in (a_n) s.t. Lϵ<aNL-\epsilon < a_N.
Then Lϵ<aNanLL-\epsilon < a_N \leq a_n \leq L for all nN.nN.anL<ϵn\geq N. \Rightarrow \forall n\geq N. |a_n-L|<\epsilon

Corollary 2.

Consider closed, non-empty nested intervals InIn+1In+2...I_n\supseteq I_{n+1}\supseteq I_{n+2}..., then then nIn\cap^\infty_n I_n\neq \emptyset

proof. Let In=[an,bn]I_n=[a_n,b_n], then we have two monotone sequence (an)(a_n) is increasing, (bn)(b_n) is decreasing. Then, k1.aklimanlimbnbk\forall k\geq 1. a_k \leq \lim_\infty a_n\leq \lim_\infty b_n \leq b_k

Then, we can show [liman,limbn]=[sup(an),inf(bn)]n1In\Rightarrow [lim_\infty a_n, \lim_\infty b_n]=[\sup(a_n),\inf(b_n)]\subseteq \cap_{n\geq 1} I_n

Example 1

(D&D 2.6.B) Let a1=0,an+1=5+ana_1 = 0, a_{n+1}=\sqrt{5 + a_n}, find whether it's convergent and if convergent what's the limit.

Monotone

a2=5>0=a1an+1=5+an>5+an1=an\begin{align*} a_2 &= \sqrt 5 > 0 = a_1\\ a_{n+1} &= \sqrt{5 + a_n} > \sqrt{5 + a_{n-1}}=a_n \end{align*}

Bounded above
an+12=5+an<5+an+1a^2_{n+1} =5 + a_n < 5 + a_{n+1}. Let x=an+1x2<5+xx2x5<0x = a_{n+1}\Rightarrow x^2 < 5 + x\Rightarrow x^2 -x -5 < 0.
x[1212,1+212]an+1=xx\in [\frac{1-\sqrt{21}}{2}, \frac{1+\sqrt{21}}{2}]\Rightarrow a_{n+1}=x is bounded above.

In fact, L=lim5+an1=5+LL2=L5L = \lim\sqrt{5 + a_{n-1}}=\sqrt{5+L} \Rightarrow L^2 = L - 5. solve and take L>0L > 0 since monotone increasing, then L=1+212L=\frac{1+\sqrt{21}}{2}

Example 2

(D&D 2.6.I) Let (an)(a_n) be bounded, define limsupan=bn=sup{ak:kn}\lim\sup a_n = b_n = \sup\{a_k: k\geq n\} for n1n\geq 1. Prove that (bn)(b_n) converges.

Monotone bnbn+1b_n\leq b_{n+1}
since bn=max(an,sup{ak:kn+1})=max(an,bn+1)bn+1b_n = \max(a_n, \sup\{a_k: k\geq n+1\})=\max(a_n,b_{n+1})\geq b_{n+1}

Bounded below n1.anM,bn=sup(ak:kn)M\forall n \geq 1. a_n\geq M, b_n = \sup(a_k:k\geq n )\geq M

L<.limbn=limnsupknanL\exists L<\infty. \lim b_n = \lim_{n\rightarrow\infty}\sup_{k\geq n} a_nL

Remark Lu=limsupakliminfak=LlL_u = \lim\sup a_k \geq \lim\inf a_k = L_l, if Lu=Ll=Llimak=LL_u = L_l = L\Rightarrow \lim a_k = L

Bolzano-Weierstrass Theorem

Every bounded sequence of real numbers has a convergent subsequence

Def'n Subsequence

A subsequence of (an)(a_n) is a sequence (ank)(a_{n_k}) where n1<n2<...n_1<n_2<...

proof. Let (an)[M,M](a_n)\subseteq [-M, M].
Construct the subsequence by - picking I1[M,M]I_1\subset [-M,M] that contains infinitely many ana_n s.t. I1M/2|I_1|\leq M/2 - ... - picking InIn1I_n\subset I_{n-1} that contains infinitely many ana_n s.t. InIn1/2M/2n|I_n| \leq |I_{n-1}|/2 \leq M/2^n.

By Nested interval lemma, n1In\cap_{n\geq 1}I_n \neq\emptyset, take LInL\in \cap I_n.

Pick anIn,n1a_n\in I_n, \forall n \geq 1 Since LInanLIn<M/2nL\in I_n\Rightarrow |a_n - L|\leq |I_n|<M/2^n.

Then ϵ>0\forall \epsilon > 0, take NϵN_\epsilon s.t. ϵ>M/2Nϵ>aNϵL\epsilon > M/2^{N_\epsilon} > |a_{N_\epsilon} - L|
but anLInINϵ/2nNϵ,nNϵ|a_n - L | \leq |I_n|\leq |I_{N_\epsilon}| / 2^{n-N_\epsilon}, \forall n\geq N_\epsilon

ϵ>M/2Nϵ>anL.nNϵliman=L\epsilon > M / 2^{N_\epsilon} > |a_n - L|. \forall n\geq N_\epsilon\Rightarrow \lim{a_n} = L