Skip to content

Gauss' Remarkable Theorem

Gauss and Codazzi-Mainardi Equations

Codazzi-Mainardi Equations

Theorem

LvMu=LΓ121+M(Γ122Γ111)NΓ112L_v - M_u = L\Gamma_{12}^1 + M (\Gamma_{12}^2 - \Gamma_{11}^1) - N\Gamma_{11}^2
MvNu=LΓ221+M(Γ222Γ121)NΓ122M_v - N_u = L\Gamma_{22}^1 + M (\Gamma_{22}^2 - \Gamma_{12}^1) - N\Gamma_{12}^2

proof. First, consider the first equation,

σuuv=σuvu\sigma_{uuv} = \sigma_{uvu}

Using Gauss equations,

Γ111σu+Γ112σv+LN)v=(Γ121σu+Γ122σv+MN)u\Gamma_{11}^1\sigma_u + \Gamma_{11}^2\sigma_v + LN)_v = (\Gamma_{12}^1\sigma_u + \Gamma_{12}^2\sigma_v + MN)_u
(Γ111)vσu+Γ111σuv+(Γ112)vσv+Γ112σvv+LvN+LNv=(Γ121)uσu+Γ121σuu+(Γ122)uσv+Γ122σuv+MuN+MNu\begin{align*} &(\Gamma_{11}^1)_v \sigma_u + \Gamma_{11}^1\sigma_{uv} + (\Gamma_{11}^2)_v \sigma_v + \Gamma_{11}^2\sigma_{vv} + L_v\mathbf N + L\mathbf N_v\\ &= (\Gamma_{12}^1)_u \sigma_u + \Gamma_{12}^1\sigma_{uu} + (\Gamma_{12}^2)_u \sigma_v + \Gamma_{12}^2\sigma_{uv} + M_u \mathbf N + M\mathbf N_u \end{align*}

Then, take dot product N\mathbf N on both sides of the equation, note N\mathbf N is perpendicular to σu,σv,Nu,Nv\sigma_u,\sigma_v, \mathbf N_u, \mathbf N_v and NN=1\mathbf N\cdot \mathbf N = 1,

Γ111σuvN+Γ112σvvN+Lv=Γ121σuuN+Γ121σuvN+Mu\Gamma_{11}^1\sigma_{uv}\cdot \mathbf N + \Gamma_{11}^2\sigma_{vv}\cdot\mathbf N + L_v = \Gamma_{12}^1\sigma_{uu}\cdot\mathbf N + \Gamma_{12}^1\sigma_{uv}\cdot\mathbf N + M_u
Γ111M+Γ112N+Lv=Γ121L+Γ121M+Mu\Gamma_{11}^1 M + \Gamma_{11}^2N + L_v = \Gamma_{12}^1L + \Gamma_{12}^1M + M_u

reorder the equations, we have the first equation.

LvMu=LΓ121+M(Γ122Γ111)NΓ112L_v - M_u = L\Gamma_{12}^1 + M (\Gamma_{12}^2 - \Gamma_{11}^1) - N\Gamma_{11}^2

Similarly, the second equation can be obtained by σvvu=σuvv\sigma_{vvu} = \sigma_{uvv}

Gauss Equations

Theorem For KK be the Gaussian curvature,

EK=(Γ112)v(Γ122)u+Γ111Γ122+Γ112Γ222Γ121Γ112(Γ122)2FK=(Γ121)u(Γ111)v+Γ122Γ121+Γ112Γ221FK=(Γ122)v(Γ222)u+Γ121Γ122+Γ221Γ112GK=(Γ221)u(Γ121)v+Γ221Γ111+Γ222Γ121(Γ122)2Γ122Γ221\begin{align*} EK &= (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{12}^1\Gamma_{11}^2 - (\Gamma_{12}^2)^2\\ FK &= (\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^2 \Gamma_{12}^1 + \Gamma_{11}^2 \Gamma_{22}^1\\ FK &= (\Gamma_{12}^2)_v - (\Gamma_{22}^2)_u + \Gamma_{12}^1 \Gamma_{12}^2 + \Gamma_{22}^1 \Gamma_{11}^2\\ GK &= (\Gamma_{22}^1)_u - (\Gamma_{12}^1)_v + \Gamma_{22}^1 \Gamma_{11}^1 + \Gamma_{22}^2 \Gamma_{12}^1 - (\Gamma_{12}^2)^2 - \Gamma_{12}^2\Gamma_{22}^1 \end{align*}

proof.

Reconsider the equation

(Γ111)vσu+Γ111σuv+(Γ112)vσv+Γ112σvv+LvN+LNv=(Γ121)uσu+Γ121σuu+(Γ122)uσv+Γ122σuv+MuN+MNu\begin{align*} &(\Gamma_{11}^1)_v \sigma_u + \Gamma_{11}^1\sigma_{uv} + (\Gamma_{11}^2)_v \sigma_v + \Gamma_{11}^2\sigma_{vv} + L_v\mathbf N + L\mathbf N_v\\ &= (\Gamma_{12}^1)_u \sigma_u + \Gamma_{12}^1\sigma_{uu} + (\Gamma_{12}^2)_u \sigma_v + \Gamma_{12}^2\sigma_{uv} + M_u \mathbf N + M\mathbf N_u \end{align*}

Now, take dot product σu\sigma_u, note that σuσu=1,σvσu=Nσu=0\sigma_u\cdot\sigma_u = 1, \sigma_v\cdot \sigma_u = \mathbf N\cdot\sigma_u = 0

(Γ111)v+Γ111σuvσu+Γ112σvvσu+LNvσu=(Γ121)u+Γ121σuuσu+Γ122σuvσu+MNuσu\begin{align*} &(\Gamma_{11}^1)_v + \Gamma_{11}^1\sigma_{uv}\sigma_u + \Gamma_{11}^2\sigma_{vv}\sigma_u + L\mathbf N_v\sigma_u\\ &= (\Gamma_{12}^1)_u + \Gamma_{12}^1\sigma_{uu}\sigma_u + \Gamma_{12}^2\sigma_{uv}\sigma_u + M\mathbf N_u\sigma_u \end{align*}

Then, note that Gauss equations represents σuu,σuv,σvv\sigma_{uu},\sigma_{uv}, \sigma_{vv} in in terms of σu,σv,N\sigma_u, \sigma_v, \mathbf N, dot product σu\sigma_u so that

σuuσu=Γ111,σuvσu=Γ121,σvvσu=Γ221\sigma_{uu}\sigma_u = \Gamma_{11}^1, \sigma_{uv}\sigma_u = \Gamma_{12}^1, \sigma_{vv}\sigma_u = \Gamma_{22}^1

Replacing them back to the equation,

(Γ111)v+Γ111Γ121+Γ112Γ221+LNvσu=(Γ121)u+Γ121Γ111+Γ122Γ121+MNuσu(\Gamma_{11}^1)_v + \Gamma_{11}^1\Gamma_{12}^1 + \Gamma_{11}^2\Gamma_{22}^1 + L\mathbf N_v\sigma_u = (\Gamma_{12}^1)_u + \Gamma_{12}^1\Gamma_{11}^1 + \Gamma_{12}^2\Gamma_{12}^1 + M\mathbf N_u\sigma_u

Finally, consider Nuσu,Nvσu\mathbf N_u\sigma_u, \mathbf N_v\sigma_u, which are the coefs of Weingarden, i.e.

Nuσu=LGMFEGF2,Nvσu=MGNFEGF2\mathbf N_u\sigma_u = \frac{LG-MF}{EG-F^2}, \mathbf N_v\sigma_u = \frac{MG-NF}{EG-F^2}

Therefore,

LNvσuMNuσu=FKL\mathbf N_v\sigma_u - M\mathbf N_u\sigma_u = -FK

and re-order the equation above, we obtain the second equation in the claim.

Similarly, we can obtain 4 equations from σuuv=σuvu,σuvu=σvvu\sigma_{uuv} = \sigma_{uvu}, \sigma_{uvu} = \sigma_{vvu} and dot product each of σu,σv\sigma_u, \sigma_v.

Theorem

If two surface patches has the same first and second fundamental forms, then exists a direct isometry between them.

Moveover, for VR2V\subset\mathbb R^2 open, given EFGLMNEFGLMN being 6 smooth functions on VV and E>0,G>0,EGF2>0E>0,G>0,EG-F^2>0 and the 6 equations (2 CM, 4 Gauss) hold. Then for any point pp on VV, there is an open set of UV,pUU\subset V, p\in U and a surface patch σ:UR3\sigma:U\rightarrow\mathbb R^3 s.t. σ\sigma has the first and second fundamental forms defined by EFGLMNEFGLMN.

In other words, given appropriate functions for first and second fundamental forms, a surface will always exist locally, and being unique up to a direct isometry.

Example: Cylinder

Let the E=G=1,F=0,L=1,M=N=0E=G=1, F=0, L=-1, M=N=0. We verify the conditions that E>0,G>0,EGF2>0E>0,G>0, EG-F^2 >0, all coefs are zero hence Γ\Gamma's are all 0 and CM, Gauss are all satisifed. Therefore, a surface patch must exist.

Using Gauss equations and plug in the numbers

σuu=Γ111σu+Γ112σv+LN=N,σuv==0,σvv==0\sigma_{uu} = \Gamma_{11}^1\sigma_u + \Gamma_{11}^2\sigma_v + L\mathbf N = -\mathbf N, \sigma_{uv} = \cdots = 0, \sigma_{vv} =\cdots = 0

Since σv\sigma_v's derivatives σvu=σvv=0\sigma_{vu} = \sigma_{vv} = 0, we must have that σv=a\sigma_v = \mathbf a being a constant. Since σuv=0\sigma_{uv} = 0, we have that

σ(u,v)=b(u)+av\sigma(u,v) = \mathbf b(u) + \mathbf a v

where N=b\mathbf N = -\mathbf b'' Then, consider Nu,Nv\mathbf N_u,\mathbf N_v where Nu=aσu+bσv,Nv=cσu+dσv-\mathbf N_u = a\sigma_u + b\sigma_v, -\mathbf N_v = c\sigma_u + d\sigma_v where

[acbd]=FI1FII=[1001]1[1000]=[1000]\begin{bmatrix}a&c\\b&d\end{bmatrix} = F_I^{-1}F_{II} = \begin{bmatrix}1&0\\0&1\end{bmatrix}^{-1} \begin{bmatrix}-1&0\\0&0\end{bmatrix} = \begin{bmatrix}-1&0\\0&0\end{bmatrix}

so that Nu=σu,Nv=0\mathbf N_u = \sigma_u,\mathbf N_v = 0, implying that

Nu=ddu(b)=b=b=σu\mathbf N_u = \frac{d}{du}(-\mathbf b'') = -\mathbf b''' =\mathbf b' = \sigma_u

Since b+b=0\mathbf b''' + \mathbf b' = 0, we must also have that b+b=N+b\mathbf b'' + \mathbf b = -\mathbf N + \mathbf b being constant vector. Take b(u)=csinu+dcosu\mathbf b(u) = \mathbf c \sin u + \mathbf d \cos u, and to make b\mathbf b and b\mathbf b'' constant, take c=e1,d=e2\mathbf c = e_1,\mathbf d = e_2.

Finally, σu×σv=λN    b×a=λb    a=(0,0,λ)\sigma_u\times \sigma_v = \lambda \mathbf N\implies \mathbf b' \times \mathbf a = \lambda \mathbf b\implies \mathbf a = (0, 0, \lambda) for any λ0\lambda \neq 0, say λ=1\lambda =1.
Therefore, we have that σ(u,v)=(cosu,sinu,v)\sigma(u,v) = (\cos u, \sin u, v) is a parameterization of the unit cylinder.

Example: Sphere

Let E=cos2v,F=0,G=1,L=cos2v,M=0,N=1E = \cos^2 v, F = 0, G = 1, L =-\cos^2 v, M = 0, N = -1.

First, using the Weingarten map we have that

[acbd]=FI1FII=[cos2v001]1[cos2v001]=[1001]\begin{bmatrix}a&c\\b&d\end{bmatrix} = F_I^{-1}F_{II} = \begin{bmatrix}\cos^2 v&0\\0&1\end{bmatrix}^{-1} \begin{bmatrix}-\cos^2v&0\\0&-1\end{bmatrix} = \begin{bmatrix}-1&0\\0&-1\end{bmatrix}

so that σu=Nu,σv=Nv\sigma_u = \mathbf N_u, \sigma_v = \mathbf N_v Therefore, N=σ+a\mathbf N = \sigma + \mathbf a where a\mathbf a is constant and σ+a=1\|\sigma+\mathbf a\| = 1. Since the surface patch is equivalent to the Weingarten map, hence the Gauss map, it is an isometry from the Gauss map, which is the unit sphere.

The parameterization is given by

σ(u,v)=(cosvcosu,cosvsinu,sinv)\sigma(u, v) = (\cos v\cos u, \cos v\sin u, \sin v)

Example: Not a surface patch

E=1,F=0,G=cos2u,L=cos2u,M=0,N=1E = 1, F = 0, G = \cos^2 u, L = \cos^2 u, M = 0, N = 1 In first fundamental form, GG is the only non-constant and FF is 0. Therefore, the non-zero Christoffel symbol are

Γ122=2cosusinu2cos2u=2tanu,Γ221=GGu2G=cosusinu\Gamma_{12}^2 = \frac{-2\cos u\sin u}{2\cos^2 u} = -2\tan u, \Gamma_{22}^1 = \frac{GG_u}{2G} = \cos u\sin u

Therefore, the RHS of the second equation is

cos2ucosusinu+2tanu0\cos^2 u \cos u \sin u + 2\tan u\neq 0

But the LHS is 00 since M,NM,N are constants.

Therefore, the CM equation is not satisifed and there is no surface patch.

Applying Gauss Equations

Theorem Suppose that a surface patch σ(u,v)\sigma(u,v) has first E=G=v2,v>0E=G=v^{-2}, v > 0, prove that L,NL,N does not depend on uu.

proof. First, the non-zero FFF derivatives are Ev=Gv=2v3E_v = G_v = -2v^{-3} so that the non-zero Christoffel symbols are

Γ112=2v52v4=1/v,Γ121=1/v,Γ222=1/v\Gamma_{11}^2 = \frac{-2v^{-5} }{2v^{-4} } = 1/v, \Gamma_{12}^1 = -1/v, \Gamma_{22}^2 = -1/v

The CM equations then gives

Lv=Lv1Nv1=v1(L+N),Nu=0L_v = -Lv^{-1} - Nv^{-1} = -v^{-1}(L+N), N_u = 0

Nu=0N_u=0 implies that NN does not depend on uu.

Then, consider Gauss equations, plug in the equations for EKEK or GKGK, we have that

v2K=v20+0+000    K=1v^{-2}K= -v^{-2} - 0 + 0 + 0 - 0- 0 \implies K = -1

where KK is the Gaussian curvature

K=LNM2EGF2=v4LN=1    LN=v4K = \frac{LN-M^2}{EG-F^2} = v^4LN = -1\implies LN = -v^{-4}

does not depend on uu as well.

Going back to the first CM equation where Lv=v1(L+N)L_v = -v^{-1}(L+N), we further get that

Lv=v1(L+L1v4)    Lv5Lv=1L2v4L_v = -v^{-1}(L + L^{-1}v^{-4})\implies Lv^5 L_v = 1 - L^2 v^4

If F=0,M=0F=0, M=0, then the Christoffel symbols are

Γ111=Eu2E,Γ112=Ev2G\Gamma_{11}^1 = \frac{E_u}{2E}, \Gamma_{11}^2 = \frac{-E_v}{2G}
Γ121=Ev2E,Γ122=Gu2G\Gamma_{12}^1 = \frac{E_v}{2E}, \Gamma_{12}^2 = \frac{G_u}{2G}
Γ221=Gu2E,Γ222=Gv2G\Gamma_{22}^1 = \frac{-G_u}{2E}, \Gamma_{22}^2 = \frac{G_v}{2G}

Therefore, the CM equations become

Lv=12(LEvE+NEvG)=12Ev(LE+NG)L_v = \frac{1}{2}\big(\frac{LE_v}{E} + \frac{NE_v}{G}\big) = \frac{1}{2}E_v(\frac{L}{E}+\frac{N}{G})
Nu=12(LGuE+NGuG)=12Gu(LE+NG)N_u = -\frac{1}{2}\big(\frac{-LG_u}{E} + \frac{-NG_u}{G}) =\frac{1}{2}G_u(\frac{L}{E}+\frac{N}{G})

and then note that the principal curvatures are simply the roots of (LκE)(NκG)=0(L-\kappa E)(N-\kappa G) = 0, since M=F=0M=F=0, thus we have κ1=LE,κ2=NG\kappa_1 = \frac{L}{E}, \kappa_2 = \frac{N}{G} so that

(κ1)v=LvELEvE2=12Ev(κ1+κ2)ELEvE2=E2Ev(κ1+κ2)E22LEEv2E2=Ev2E(κ1+κ22κ1)=Ev2E(κ2κ1)(κ2)u=NuGNGuG2=Gu2G(κ1κ2)\begin{align*} (\kappa_1)_v &= \frac{L_vE - LE_v}{E^2}\\ &= \frac{\frac{1}{2}E_v(\kappa_1+\kappa_2)E - LE_v}{E^2}\\ &=\frac{E}{2}\frac{E_v(\kappa_1+\kappa_2) - \frac{E}{2}\frac{2L}{E}E_v}{2E^2}\\ &= \frac{E_v}{2E}(\kappa_1 + \kappa_2 - 2\kappa_1)\\ &= \frac{E_v}{2E}(\kappa_2 - \kappa_1)\\ (\kappa_2)_u &= \frac{N_uG - NG_u}{G^2} \\ &= \frac{G_u}{2G}(\kappa_1-\kappa_2) \end{align*}

Gauss' Remarkable Theorem

Theorem The Gaussian curvature of a surface is perserved by local isometries.

Theorem The Gaussian curvature is given by

K=1(EGF2)2(det[Evv2+FuvGuu2Eu2FuEv2FvGu2EFGv2FG]det[0Ev2Gu2Ev2EFGu2FG])K = \frac{1}{(EG-F^2)^2}\big(\det\begin{bmatrix} \frac{E_{vv} }{2} + F_{uv} - \frac{G_{uu} }{2} &\frac{E_u}{2}&F_u-\frac{E_v}{2}\\ F_v-\frac{G_u}{2} &E&F\\ \frac{G_v}{2}&F&G \end{bmatrix} - \det\begin{bmatrix} 0&\frac{E_v}{2}&\frac{G_u}{2}\\ \frac{E_v}{2}&E&F\\ \frac{G_u}{2}&F&G \end{bmatrix}\big)

Corollary If F=0F=0,

K=12EG(u(GuEG)+v(EvEG))K = -\frac{1}{2\sqrt{EG} } \big(\partial_u (\frac{G_u}{\sqrt{EG} }) +\partial_v (\frac{E_v}{\sqrt{EG} })\big)

proof. Using the first formula of Gauss equations, and substitute each Chrsitoffel symbol

EK=(Γ112)v(Γ122)u+Γ111Γ122+Γ112Γ222Γ121Γ112(Γ122)2=(Ev2G)v(Gu2G)u+Eu2EGu2G+Ev2GGv2GEv2E(Ev2G)(Gu2G)2=EvGvEvvG2G2GuuGGu22G2+EuGu4EGEvGv2G2+Ev24EGGu24G2u(GuEG)=GuuEGGu(EuG+EGu)2(EG)3/2v(EvEG)=EvvEGEv(EvG+EGv)2(EG)3/2\begin{align*} EK &= (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{12}^1\Gamma_{11}^2 - (\Gamma_{12}^2)^2\\ &= (-\frac{E_v}{2G})_v - (\frac{G_u}{2G})_u + \frac{E_u}{2E} \frac{G_u}{2G} + \frac{-E_v}{2G}\frac{G_v}{2G} - \frac{E_v}{2E}(-\frac{E_v}{2G}) - (\frac{G_u}{2G})^2\\ &= \frac{E_vG_v - E_{vv} G}{2G^2} - \frac{G_{uu} G - G_u^2}{2G^2}+ \frac{E_uG_u}{4EG} - \frac{E_vG_v}{2G^2} + \frac{E_v^2}{4EG} - \frac{G_u^2}{4G^2}\\ \partial_u (\frac{G_u}{\sqrt{EG} }) &= \frac{G_{uu} }{\sqrt{EG} } - \frac{G_u(E_uG + E G_u)}{2(EG)^{3/2} }\\ \partial_v (\frac{E_v}{\sqrt{EG} }) &= \frac{E_{vv} }{\sqrt{EG} } - \frac{E_v(E_vG + E G_v)}{2(EG)^{3/2} } \end{align*}

Take 2EG2\sqrt{EG} out of the RHS, and we can obtain the equation.

Corollary If E=1,F=0E=1,F=0, then K=1G2Gu2K = -\frac{1}{\sqrt G}\frac{\partial^2\sqrt G}{\partial u^2}

Example: Sphere

Claim any plane map of any region of a sphere must distort distances.

proof. The claim is equivalent to that there is no isometry between open subset of a plane to a sphere. Known that the Gaussian curvature of plane is 00 everywhere, while KK for sphere is positive constant. Therefore, such isometry cannot exist.

Example

Claim If E=eλ,F=0,G=eλE=e^\lambda, F=0,G=e^\lambda, where λ\lambda is a smooth function of u,vu,v. Then

Δλ+2Keλ=0\Delta \lambda + 2Ke^\lambda = 0

Δ\Delta is the Laplacian operator

proof. Note that F=0F=0, so that we have that

K=12eλ(u(Gueλ)+v(Eveλ))=12eλ(u(eλλueλ)+v(eλλveλ))=12eλ(λuu+λvv)K=12eλΔλ\begin{align*} K &= -\frac{1}{2e^\lambda } \big(\partial_u (\frac{G_u}{e^\lambda }) +\partial_v (\frac{E_v}{e^\lambda })\big)\\ &= -\frac{1}{2e^\lambda } \big(\partial_u (\frac{e^\lambda\lambda_u}{e^\lambda }) +\partial_v (\frac{e^\lambda\lambda_v}{e^\lambda })\big)\\ &= -\frac{1}{2e^\lambda }(\lambda_{uu} + \lambda_{vv})\\ K &= -\frac{1}{2e^\lambda}\Delta \lambda \end{align*}