Functions of Random Variable Change of Variable Theorem Let X X X be a r.v. and Y = g ( X ) Y=g(X) Y = g ( X ) where g : R → R g:\mathbb R\rightarrow\mathbb R g : R → R is a funciton. Then
pmf Y ( y ) = ∑ x : g ( x ) = y pmf X ( x ) \text{pmf}_Y(y) = \sum_{x: g(x) = y} \text{pmf}_X(x) pmf Y ( y ) = x : g ( x ) = y ∑ pmf X ( x ) X X X is continuous and g g g is an appropriate transformation, cdf Y ( y ) = ∫ x : g ( x ) ≤ y pdf X ( x ) d x = P ( { x : g ( x ) ≤ y } ) \text{cdf}_Y(y) = \int_{x: g(x)\leq y}\text{pdf}_X(x)dx = P(\{x: g(x) \leq y\}) cdf Y ( y ) = ∫ x : g ( x ) ≤ y pdf X ( x ) d x = P ({ x : g ( x ) ≤ y }) pdf Y ( y ) = d d y cdf Y ( y ) \text{pdf}_Y(y) = \frac{d}{dy} \text{cdf}_Y(y) pdf Y ( y ) = d y d cdf Y ( y ) Theorem Let F ( x ) = cdf X ( x ) F(x) = \text{cdf}_X(x) F ( x ) = cdf X ( x ) , then F ( X ) ∼ u n i f o r m ( 0 , 1 ) F(X)\sim uniform(0, 1) F ( X ) ∼ u ni f or m ( 0 , 1 )
proof . Let Y = F ( X ) Y=F(X) Y = F ( X ) ,
cdf Y ( y ) = P ( { x : F ( x ) < y } ) = P ( X ≤ x ) = F ( x ) = y \text{cdf}_Y(y) = P(\{x:F(x) < y\}) = P(X \leq x) = F(x) = y cdf Y ( y ) = P ({ x : F ( x ) < y }) = P ( X ≤ x ) = F ( x ) = y Change of Single Variable Theorem (change of variable) Let X X X be continuous r.v. and function g g g be differentiable and injective. Then
pdf Y ( y ) = pdf X ( g − 1 ( y ) ) ∣ d d y g − 1 ( y ) ∣ \text{pdf}_Y(y) = \text{pdf}_X(g^{-1}(y))|\frac{d}{dy}g^{-1}(y)| pdf Y ( y ) = pdf X ( g − 1 ( y )) ∣ d y d g − 1 ( y ) ∣ proof . wlog assume g g g is increasing (as a appropriate transformation function), then \begin{align} \text{pdf}Y(y) &= \frac{d}{dy}\text{cdf}_Y(y)\ &= \frac{d}{dy}\int _X(x)dx\ &= \frac{d}{dy} \text{cdf}_X(g^{-1}(y)) \ &= \text{pdf}_X(g^{-1}(y))|\frac{d}{dy}g^{-1}(y)| \end{align}^{g^{-1}(y)} \text{pdf }
Change of Variables for Multivariate Functions Theorem For discrete random variables X = ( X 1 , . . . , X n ) \mathbf X = (X_1,...,X_n) X = ( X 1 , ... , X n ) , Let G : R n → R m \mathbf G:\mathbb R^n\rightarrow\mathbb R^m G : R n → R m be the transformation s.t. Y = ( Y 1 , . . . , Y m ) , Y = G ( X ) , Y i = g i ( X 1 , . . . , X n ) \mathbf Y = (Y_1,...,Y_m), \mathbf Y = \mathbf G(\mathbf X), Y_i = g_i(X_1, ..., X_n) Y = ( Y 1 , ... , Y m ) , Y = G ( X ) , Y i = g i ( X 1 , ... , X n ) . Then
pmf Y = ∑ x : G ( x ) = y pmf X ( x ) \text{pmf}_{\mathbf Y} = \sum_{\mathbf x: \mathbf G(\mathbf x) = \mathbf y}\text{pmf}_{\mathbf X}(\mathbf x) pmf Y = x : G ( x ) = y ∑ pmf X ( x ) random variables X 1 , . . . , X n X_1,...,X_n X 1 , ... , X n are said to be independent and identically distributed (iid.) if X i X_i X i 's are independent and have the same distribution.
Example the sum of independent Bernoulli trails follows binomial distribution.
proof . Let X i ∼ Bern. ( p ) X_i \sim \text{Bern.}(p) X i ∼ Bern. ( p ) . Y n = ∑ n X i Y_n = \sum^n X_i Y n = ∑ n X i . We will prove by induction.
Obviously Y 1 = X 1 ∼ Bern. ( p ) ≡ binomial ( 1 , p ) Y_1 = X_1 \sim \text{Bern.}(p)\equiv \text{binomial}(1, p) Y 1 = X 1 ∼ Bern. ( p ) ≡ binomial ( 1 , p )
Assume Y k ∼ binomial ( k , p ) Y_k \sim \text{binomial}(k, p) Y k ∼ binomial ( k , p ) . Then
P ( Y k + 1 = 0 ) = P ( Y k = 0 , X k + 1 − 0 ) = P ( Y k = 0 ) P ( X k + 1 = 0 ) = ( k 0 ) ( 1 − p ) k ( 1 − p ) = ( k + 1 0 ) ( 1 − p ) k + 1 P ( Y k + 1 = j ) = P ( ( Y k = j , X k + 1 = 0 ) ∪ ( Y k = j − 1 , X k + 1 = 1 ) ) = P ( Y k = j ) P ( X k + 1 = 0 ) + P ( Y k = j − 1 ) P ( X k + 1 = 1 ) = ( k j ) p j ( 1 − p ) k − j ( 1 − p ) + ( k j − 1 ) p j − 1 ( 1 − p ) k − ( j − 1 ) p = ( k + 1 j ) p j ( 1 − p ) k + 1 − j Y k + 1 ∼ binomial ( k + 1 , p ) \begin{align*} P(Y_{k+1} = 0) &= P(Y_k=0, X_{k+1} - 0) \\ &= P(Y_k = 0)P(X_{k+1}=0)\\ &= {k\choose 0}(1-p)^k (1-p) \\ &= {k+1\choose 0}(1-p)^{k+1}\\ P(Y_{k+1}=j) &= P((Y_k = j, X_{k+1} = 0)\cup (Y_k = j-1, X_{k+1} = 1))\\ &= P(Y_k = j)P(X_{k+1} = 0) + P(Y_k = j-1)P(X_{k+1} = 1)\\ &= {k\choose j}p^j(1-p)^{k-j}(1-p) + {k\choose j-1}p^{j-1}(1-p)^{k-(j-1)}p\\ &= {k+1\choose j}p^j(1-p)^{k+1-j}\\ Y_{k+1}&\sim \text{binomial} (k+1,p) \end{align*} P ( Y k + 1 = 0 ) P ( Y k + 1 = j ) Y k + 1 = P ( Y k = 0 , X k + 1 − 0 ) = P ( Y k = 0 ) P ( X k + 1 = 0 ) = ( 0 k ) ( 1 − p ) k ( 1 − p ) = ( 0 k + 1 ) ( 1 − p ) k + 1 = P (( Y k = j , X k + 1 = 0 ) ∪ ( Y k = j − 1 , X k + 1 = 1 )) = P ( Y k = j ) P ( X k + 1 = 0 ) + P ( Y k = j − 1 ) P ( X k + 1 = 1 ) = ( j k ) p j ( 1 − p ) k − j ( 1 − p ) + ( j − 1 k ) p j − 1 ( 1 − p ) k − ( j − 1 ) p = ( j k + 1 ) p j ( 1 − p ) k + 1 − j ∼ binomial ( k + 1 , p ) Theorem If X , Y X,Y X , Y are independent continuous r.v. then
pdf X + Y ( z ) = ∫ pdf X ( x ) pdf Y ( z − x ) d x \text{pdf}_{X+Y}(z) = \int \text{pdf}_X(x)\text{pdf}_Y(z-x)dx pdf X + Y ( z ) = ∫ pdf X ( x ) pdf Y ( z − x ) d x proof . Let Z = X + Y Z=X+Y Z = X + Y
cdf Z ( z ) = P ( X + Y ≤ z ) = P ( X ≤ x , Y ≤ z − x ) = P ( X ≤ x ) P ( Y ≤ z − x ) = ∫ − ∞ ∞ ∫ − ∞ z − x pdf X ( x ) pdf Y ( y ) d y d x = ∫ − ∞ ∞ pdf X ( x ) cdf Y ( z − x ) d x pdf Z ( z ) = d d z ∫ − ∞ ∞ pdf X ( x ) cdf Y ( z − x ) d x = ∫ − ∞ ∞ pdf X ( x ) pdf Y ( z − x ) d x \begin{align*} \text{cdf}_Z(z) &= P(X+Y \leq z)\\ &= P(X \leq x, Y \leq z-x)\\ &=P(X \leq x)P(Y \leq z-x)\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x}\text{pdf}_X(x)\text{pdf}_Y(y)dydx\\ &= \int_{-\infty}^{\infty} \text{pdf}_X(x) \text{cdf}_Y(z-x)dx\\ \text{pdf}_Z(z) &= \frac{d}{dz} \int_{-\infty}^{\infty} \text{pdf}_X(x) \text{cdf}_Y(z-x)dx\\ &= \int_{-\infty}^{\infty} \text{pdf}_X(x) \text{pdf}_Y(z-x)dx\\ \end{align*} cdf Z ( z ) pdf Z ( z ) = P ( X + Y ≤ z ) = P ( X ≤ x , Y ≤ z − x ) = P ( X ≤ x ) P ( Y ≤ z − x ) = ∫ − ∞ ∞ ∫ − ∞ z − x pdf X ( x ) pdf Y ( y ) d y d x = ∫ − ∞ ∞ pdf X ( x ) cdf Y ( z − x ) d x = d z d ∫ − ∞ ∞ pdf X ( x ) cdf Y ( z − x ) d x = ∫ − ∞ ∞ pdf X ( x ) pdf Y ( z − x ) d x Example For X 1 , . . . , X n X_1,...,X_n X 1 , ... , X n iid, Y n = max ( X 1 , . . . , X n ) , Y 1 = min ( X 1 , . . . , X n ) Y_n = \max(X_1,...,X_n), Y_1 = \min(X_1,...,X_n) Y n = max ( X 1 , ... , X n ) , Y 1 = min ( X 1 , ... , X n ) .
cdf Y n ( y ) = P ( max ( X 1 , . . . , X n ) ≤ y ) = P ( X 1 ≤ y , . . . , X n ≤ y ) = ∏ n P ( X i ≤ y ) = cdf X ( y ) n cdf Y 1 ( y ) = 1 − P ( Y 1 > y ) = 1 − P ( min ( X 1 , . . . , X n ) > y ) = 1 − P ( X 1 > y , . . . , X n > y ) = 1 − ∏ n P ( X i > y ) = 1 − ( 1 − cdf X ( y ) ) n cdf Y 1 , Y n ( y 1 , y 2 ) = P ( Y 1 ≤ y 1 , Y 2 ≤ y 2 ) = P ( y 2 ≤ y 2 ) − P ( Y 1 > y 1 , Y 2 ≤ y 2 ) = cdf X ( y 2 ) n − ∏ n P ( y 1 < X i ≤ y 2 ) = cdf X ( y 2 ) n − ( cdf X ( y 2 ) − cdf X ( y 1 ) ) n \begin{align*} \text{cdf}_{Y_n}(y) &= P(\max(X_1,...,X_n) \leq y) \\ &= P(X_1 \leq y,...,X_n\leq y)\\ &= \prod^n P(X_i \leq y) \\ &= \text{cdf}_X(y)^n\\ \text{cdf}_{Y_1}(y) &= 1 - P(Y_1 > y)\\ &= 1 - P(\min(X_1,...,X_n) > y) \\ &= 1 - P(X_1 > y,...,X_n > y)\\ &= 1 - \prod^n P(X_i > y) \\ &= 1 - (1-\text{cdf}_X(y))^n\\ \text{cdf}_{Y_1,Y_n}(y_1,y_2)&= P(Y_1\leq y_1, Y_2\leq y2)\\ &= P(y_2\leq y_2) - P(Y_1 > y_1, Y_2\leq y_2)\\ &= \text{cdf}_X(y_2)^n - \prod^n P(y_1 < X_i \leq y_2)\\ &= \text{cdf}_X(y_2)^n - (\text{cdf}_X(y_2) - \text{cdf}_X(y_1))^n \end{align*} cdf Y n ( y ) cdf Y 1 ( y ) cdf Y 1 , Y n ( y 1 , y 2 ) = P ( max ( X 1 , ... , X n ) ≤ y ) = P ( X 1 ≤ y , ... , X n ≤ y ) = ∏ n P ( X i ≤ y ) = cdf X ( y ) n = 1 − P ( Y 1 > y ) = 1 − P ( min ( X 1 , ... , X n ) > y ) = 1 − P ( X 1 > y , ... , X n > y ) = 1 − ∏ n P ( X i > y ) = 1 − ( 1 − cdf X ( y ) ) n = P ( Y 1 ≤ y 1 , Y 2 ≤ y 2 ) = P ( y 2 ≤ y 2 ) − P ( Y 1 > y 1 , Y 2 ≤ y 2 ) = cdf X ( y 2 ) n − ∏ n P ( y 1 < X i ≤ y 2 ) = cdf X ( y 2 ) n − ( cdf X ( y 2 ) − cdf X ( y 1 ) ) n Theorem (change of variables) For random variables X = ( X 1 , . . . , X n ) \mathbf X = (X_1,...,X_n) X = ( X 1 , ... , X n ) , Let G : R n → R m \mathbf G:\mathbb R^n\rightarrow\mathbb R^m G : R n → R m be the transformation s.t. Y = ( Y 1 , . . . , Y m ) , Y = G ( X ) , Y i = g i ( X 1 , . . . , X n ) \mathbf Y = (Y_1,...,Y_m), \mathbf Y = \mathbf G(\mathbf X), Y_i = g_i(X_1, ..., X_n) Y = ( Y 1 , ... , Y m ) , Y = G ( X ) , Y i = g i ( X 1 , ... , X n ) . IF G \mathbf G G is injective and differentiable, then
pdf Y ( y ) = pdf X ( G − 1 ( y ) ) ∣ det ( D D y G − 1 ( y ) ) ∣ \text{pdf}_{\mathbf Y}(\mathbf y) = \text{pdf}_{\mathbf X}(\mathbf G^{-1}(\mathbf y))|\det(\frac{D}{D\mathbf y}\mathbf G^{-1}(\mathbf y))| pdf Y ( y ) = pdf X ( G − 1 ( y )) ∣ det ( D y D G − 1 ( y )) ∣ January 11, 2025 January 9, 2023