Skip to content

Normed Space

Def'n. Norm

Let VV be a vector space over R\mathbb{R}, a norm \|\cdot\| over VV is a function VR+V\rightarrow \mathbb{R}^+ s.t.

  • positive definite: x0x=0IFFx0V\|x\|\geq 0 \land \|x\| = 0 IFF x\equiv 0 \in V
  • homogeneous ax=ax.aR\|ax\| = |a|\|x\|. \forall a\in \mathbb{R}
  • triangular inequality x+y=x+y\|x+y\| = \|x\| + \|y\|

Example: Euclidean space over Rn\mathbb{R}^n

x2=xk2\|x\|_2 = \sqrt{\sum |x_k|^2} - positive definite
xk20xk20|x_k|^2 \geq 0 \Rightarrow \sqrt{\sum |x_k|^2} \geq 0
x=0x=0\|x\| = 0\Rightarrow x = 0 - homogeneous ax=axk2=a2xk2=ax\|ax\| = \sqrt{\sum |ax_k|^2} = \sqrt{|a|^2\sum |x_k|^2} = |a|\|x\| - Tri-ineq
By Cauchy Swartz Inequality
x+y2=xk+yk2xk2+yk2=xk2+yk2=x2+y2\|x+y\|^2 = \sum |x_k + y_k|^2 \leq \sum |x_k|^2 + |y_k|^2 = \sum |x_k|^2 + \sum|y_k|^2 = \|x\|^2 + \|y\|^2

Example: Some well-known norms

Some norms are

  • p-norm xp:=(xkp)p1,p1\|x\|_p:=(\sum |x_k|^p)^{p^{-1}}, p\geq 1
  • Lp-norm fLp:=(Sf(x)pdx)p1,p1\|f\|_{L_p} := (\int_S f(x)^p dx)^{p^{-1}}, p\geq 1 is a norm over C:=C:= the set of all continuous functions
  • sup-norm f:=sup{f(x):xS}\|f\|_\infty:= sup\{|f(x)|:x\in S\} is a norm over Cb(S):=C_b(S):= the set of all continuous bounded functions or over C(S)C(S) if SS is compact.

Example: sup-norm

Claim. sup-norm is a norm proof.

  1. f(x)0|f(x)| \geq 0, f(x):=0f=0,f=0f(x)0f(x)=0f(x):= 0 \Rightarrow \|f\|_\infty = 0, \|f\|_\infty=0\Rightarrow |f(x)|\leq 0\Rightarrow f(x)=0
  2. af=supaf(S)=asupf(S)=af\|af\|_\infty = sup|af(S)| = |a|sup|f(S)|= |a|\|f\|_\infty
  3. f+g=sup(f+g)sup(f+g)supf+supg=f+g\|f+g\|=sup(|f+g|) \leq sup(|f| + |g|) \leq sup|f| + sup|g| = \|f\| + \|g\|

Ck(S):=C^k(S):= The set of all real number functions whose k-first derivative exists and continuous

Some norms are defined on CkC^k, such as f:=maxf;fCk=f(n)\|f\|':= \max\|f'\|_\infty; \|f\|_{C^k} = \sum \|f^{(n)}\|_\infty

Remark CC^\infty a.k.a. smooth are normed space that obey completeness

Topology of normed-spaces

Thrm 1.

The set C:={f:[0,1]R:f(0)=1}C:=\{f:[0,1]\rightarrow \mathbb{R}: f(0)=1\} is closed in (C([0,1]),f:=supx[0,1]f(x))(C([0,1]), \|f\|_\infty:= sup_{x\in [0,1]}f(x)).

proof. Take a sequence gnCg_n \in C s.t. gng0\|g_n - g\| \rightarrow 0. Then, consider

g(0)1g(0)gn(0)+gn(0)1g(0)gn(0)gng=0g(0)1g(0)=1gC\begin{align*} |g(0) - 1| &\leq |g(0) - g_n(0)| + |g_n(0) -1|\\ &\leq |g(0)-g_n(0)| \leq \|g_n-g\|=0\\ &\Rightarrow g(0)\rightarrow 1\Rightarrow g(0) = 1\Rightarrow g\in C \end{align*}

Thrm 2.

Let A:={f[0,1]:f(x)>0,f<2}A:=\{f\in [0,1]: f(x) > 0, \|f'\|_\infty < 2\} is open in C1([0,1])C^1([0,1]) wrt f,C1:=f+f\|f\|_{\infty, C^1}:=\|f\|_\infty + \|f'\|_\infty

proof. Take any gAg\in A.
Since g(x)>0g(x) > 0, by EVT on [0,1][0,1], take δ1\delta_1 s.t. g(x)>δ1>0g(x)> \delta_1 > 0.
Since g(x)<2g'(x) < 2, by EVT on [0,1][0,1], take δ2\delta_2 s.t. g(x)<2δ2<2g'(x)< 2-\delta_2 < 2.
Take δ=min(δ1,δ2)/2\delta = \min(\delta_1, \delta_2)/ 2.

hg<δ    h(x)g(x)<δ    h(x)>g(x)δ>δ1/2>0hg<δ    h(x)g(x)<δ    h(x)<g(x)+δ<2δ2+δ2/2<2\begin{align*} \|h-g\|_\infty < \delta &\implies |h(x)-g(x)|< \delta \\ &\implies h(x) > g(x)-\delta > \delta_1/2 > 0\\ \|h'-g'\|_\infty < \delta &\implies |h'(x) - g'(x)| < \delta\\ &\implies h'(x) < g'(x)+\delta < 2-\delta_2 + \delta_2/2 < 2 \end{align*}

Thrm 3.

Cc(R):=C_c(\mathbb{R}):= space of compactly supported function on reals, Cc(R),fCc(R)C_c(\mathbb R), f\in C_c(\mathbb R) if M>0\exists M > 0 s.t. f(x)=0,x>Mf(x)=0, \forall |x| > M

Claim Cc(R)C_c(\mathbb R) is not complete wrt f\|f\|_\infty

proof. WTF a Cauchy sequence fnCc(R)f_n \in C_c(\mathbb R) s.t. fmf∉Cc(R)f_m \rightarrow f\not\in C_c(\mathbb R).
Take fn(x)=1(x/n)21+x2I(xn)f_n(x) = \frac{1-(x/n)^2}{1+x^2}\mathbb I (|x|\leq n) and we can show that fnf_n is Cauchy wrt \|\cdot\|_\infty

wlog, assume n>mn > m,
Consider

fnfm=supx[n,n]1(x/n)21+x2fm(x)\|f_n - f_m\| = \sup_{x\in [-n,n]} |\frac{1-(x/n)^2}{1+x^2} - f_m(x)|

Suppose that x[m,m]x\in [-m,m],

supx[n,n]1(x/n)21+x21(x/m)21+x2=x21+x2n2m210=0\sup_{x\in [-n,n]} |\frac{1-(x/n)^2}{1+x^2} - \frac{1-(x/m)^2}{1+x^2}| = |\frac{x^2}{1+x^2}||n^{-2} - m^{-2}| \rightarrow |1||0|=0

Suppose that x[n,m)(m,n]x\in [-n, -m)\cup (m, n],

supx[n,n]1(x/n)21+x211+x211+m20\sup_{x\in [-n,n]} |\frac{1-(x/n)^2}{1+x^2}|\leq |\frac{1}{1+x^2}|\leq |\frac{1}{1+m^2}|\rightarrow 0

Therefore, take N=ϵ1/2N = \epsilon^{1/2} we can prove Cauchy.

However, fn(x)=1(x/n)21+x211+x20f_n(x)=\frac{1-(x/n)^2}{1+x^2}\rightarrow \frac{1}{1+x^2}\rightarrow 0 is not compactly supported

Therefore, only compact in metric space \rightarrow closed and bounded but not the converse.