Intuitively, curvature measures how "curved" a curve is. Suppose that \(\gamma(t)\) is a pamameterized curve. As \(t\) changes to \(t+\Delta t\), the curve moves away from its tangent \(\gamma'(t)\) by
If \(\gamma\) is a unit-speed curve, its curvature \(\kappa(t)\) at the point \(\gamma(t)\) is defined as \(\|\gamma''(t)\|\).
Cross Product
For 3D vectors \(\mathbf a, \mathbf b \in \mathbb R^3\), cross product is a 3D vector s.t. \(\mathbf a\times \mathbf b \in \mathbb R^3\) s.t. \(\forall w\in\mathbb R^3. (\mathbf a\times \mathbf b)\cdot \mathbf w = \det(\begin{bmatrix}\mathbf a&\mathbf b&\mathbf w\end{bmatrix})\).
Note that \(\det(A) = \det(A^T)\), and for \(3\times3\) matrices, switching two adjacent rows will flip the sign, then switch twice won't change the determinant.
\(\mathbf a\times (\mathbf b + \mathbf c) = \mathbf a \times \mathbf b + \mathbf a \times \mathbf c\)
\(\lambda \mathbf a \times \mathbf b = \lambda (\mathbf a \times \mathbf b) = \mathbf a \times \lambda\mathbf b\)
\(\mathbf a \times \mathbf b + \mathbf c \times \mathbf d = (\mathbf a - \mathbf c) \times (\mathbf b - \mathbf d) + \mathbf a \times \mathbf d + \mathbf c \times \mathbf b\)
Plane Normal
Claim Cross product is perpendicular to both of its vectors.
\[(\mathbf a \times \mathbf b) \cdot \mathbf a = (\mathbf a \times \mathbf b) \cdot \mathbf b = 0\]
proof. Note that
\[(\mathbf a \times \mathbf b) \cdot \mathbf a = \det(\begin{bmatrix}\mathbf a&\mathbf b&\mathbf a\end{bmatrix}), (\mathbf a \times \mathbf b) \cdot \mathbf b = \det(\begin{bmatrix}\mathbf a&\mathbf b&\mathbf b\end{bmatrix})\]
\(\begin{bmatrix}\mathbf a&\mathbf b&\mathbf a\end{bmatrix}, \begin{bmatrix}\mathbf a&\mathbf b&\mathbf b\end{bmatrix}\) are both linearly dependent, hence their determinant are both 0.
Geometric Meaning
Lemma\((\mathbf a \times \mathbf b)\cdot (\mathbf c \times \mathbf d) = \det(\begin{bmatrix}\mathbf a\cdot\mathbf c&\mathbf b\cdot\mathbf c\\\mathbf a\cdot\mathbf d&\mathbf b\cdot\mathbf d\end{bmatrix})\).
proof. By linearity, it is sufficient to show only when \(\mathbf a, \mathbf b, \mathbf c, \mathbf d \in \{\mathbf e_1, \mathbf e_2, \mathbf e_3\}\). Then, we can list all possible combinations and prove this claim.
Therefore, \(\|\mathbf a\times \mathbf b\|\) can be understood are the area of the parallelogram the area of the parallelogram that \(\mathbf a, \mathbf b\) span. Also, \(\mathbf a\times \mathbf b, \mathbf a, \mathbf b\) forms a signed basis.
Curvature for 3D
Note that our definition for curvature depends on \(\gamma\) being unit-speed. However, find a unit-speed parameterization is not always easy even though we know it exist.
Claim Let \(\gamma(t)\) be a regular curve in \(\mathbb R^3\), then its curvature is \(\kappa = \frac{\|\gamma''\times \gamma'\|}{\|\gamma'\|^3}\).
proof. Since \(\gamma\) is regular, take \(s\) be a unit-speed map for \(\gamma\).
\[\begin{align*} \gamma'(t) &= (-3\cos^2 t \sin t, 3\sin^2 t \cos t)\\ \|\gamma'(t)\| &= (9\cos^4 t sin^2 t + 9 \sin^4 t \cos^2 t)^{1/2} = |3\sin t \cos t|\\ \gamma''(t) &= (6\cos t\sin^2 t - 3cos^3 t, 6\sin t\cos^2 t - 3\sin^3 t))\\ \|\gamma''(t) \times \gamma'(t)\| &= (-3\cos^2 t \sin t)(6\sin t\cos^2 t - 3\sin^3 t) - (3\sin^2 t \cos t)(6\cos t\sin^2 t - 3cos^3 t)\\ &= |-18\sin^2 t\cos^4 t + 9\sin^4 t \cos^2 t - 18\sin^4 t \cos^2 t + 9\sin^2 t \cos^4 t|\\ &= 9\sin^2 t\cos^2 t = |3\sin t \cos t|^2\\ \kappa(t) &= \frac{ |3\sin t \cos t|^2}{ |3\sin t \cos t|^3} = |3\sin t \cos t|^{-1} \end{align*}\]
Source code
Claim 1
For some regular curve \(\gamma\), and its curvature o\(\kappa\), if \(\forall t,\kappa(t) > 0\), then \(\kappa\) is smooth.
proof. Let \(\gamma\) be regular, wlog assume \(\gamma\) is unit-length so that \(\kappa = \|\gamma''\|\). Note that \(\gamma\) is smooth, hence all of its components are smooth, add is smooth, and square root is smooth on \((0, \infty)\). Therefore, \(\kappa = \|\gamma''\|\) is smooth on \((0,\infty)\).