Skip to content

Arzela-Ascoli Theorem

Def'n. Equicontinuous

A family of function FC(K,Rm)\mathcal F \subset C(K,\mathbb R^m) is equicontinuous at aKa\in K

fF.ϵ>0.δ>0.xa<δf(x)f(a)<ϵ\forall f \in \mathcal F. \forall \epsilon > 0. \exists \delta > 0. \|x-a\|<\delta \Rightarrow \|f(x)-f(a)\|<\epsilon

Then F\mathcal F is equicontinuous on KK is F\mathcal F is equicontinuous aK\forall a\in K.

Def'n. Uniformly equicontinuous

F\mathcal F is uniformly equicontinuous if

ϵ>0.δ>0.fF.x,yK.xy<δf(x)f(y)<ϵ\forall \epsilon > 0. \exists \delta > 0. \forall f\in\mathcal F. \forall x,y\in K. \|x-y\|<\delta \Rightarrow \|f(x)-f(y)\|<\epsilon

Theorem 1

G:={gn}n1{g}\mathcal G := \{g_n\}_{n\geq 1}\cup \{g\} where gnC(K,Rm),gnu.c.gg_n \in C(K,\mathbb R^m), g_n\rightarrow^{u.c.}g, then G\mathcal G is equicontinuous.

proof. Let aK,ϵ>0a\in K, \epsilon > 0,
By completeness and uniform continuous, gg is also continuous,
take δ>0\delta' > 0 s.t. xK.xa<δg(x)g(a)<ϵ/3\forall x\in K. \|x-a\|<\delta' \Rightarrow \|g(x)-g(a)\|<\epsilon/3.
By uniform continuous, take N0N\geq 0 s.t. nN.gng<ϵ/3\forall n\geq N. \|g_n-g\|_\infty <\epsilon/3.
Then, nN.x,xa<δ\forall n\geq N. \forall x, \|x-a\|<\delta'
gn(x)gn(a)gn(x)g(x)+g(x)g(a)+g(a)gn(a)3(ϵ/3)=ϵ\|g_n(x)-g_n(a)\| \leq \|g_n(x)-g(x)\| + \|g(x)-g(a)\| + \|g(a)-g_n(a)\| \leq 3(\epsilon/3)=\epsilon

Then, for each gk{g1,g2,...,gN}g_k \in \{g_1,g_2,...,g_N\}, take δk\delta_k by continuity of each gkg_k, take δ=min{δ1,..,δk,δ}\delta = \min\{\delta_1,..,\delta_k, \delta'\}

fF.ϵ>0.δ>0.xa<δf(x)f(a)<ϵ\forall f \in \mathcal F. \forall \epsilon > 0. \exists \delta > 0. \|x-a\|<\delta \Rightarrow \|f(x)-f(a)\|<\epsilon

Example 1

fn(x)=xn,x[0,1],F={fn}n1f_n(x)=x^n, x\in [0,1], \mathcal F = \{f_n\}_{n\geq 1} is not equicontinuous at 1.

proof. Take ϵ=1/2\epsilon =1/2, let δ>0\delta > 0, wlog, δ<1\delta < 1.
Take y=1δ/2<1y = 1-\delta/2<1, then yn0y^n \rightarrow 0, hence we can take NN s.t. nN,1yn>1/2\forall n\geq N, 1-y^n > 1/2
Therefore, 1y=δ/2<δ|1-y|=\delta/2 < \delta but fn(1)fn(y)=1yn>1/2|f_n(1)-f_n(y)|= 1-y^n > 1/2

Lemma 1. Compact Implies Equicontinuous

If F\mathcal F compact, then F\mathcal F equicontinuous on KK.

proof. Suppose F\mathcal F is not equicontinuous,
take aK,ϵ>0a\in K, \epsilon > 0 s.t. n1.fnF.xnK\forall n\geq 1. \exists f_n\in\mathcal F. \exists x_n\in K s.t. xna<1/n\|x_n-a\|<1/n but fn(xn)fn(a)ϵ\|f_n(x_n) - f_n(a)\| \geq \epsilon, hence we construct sequences {xn},{fn}\{x_n\}, \{f_n\}
Then, any subset of {fn}\{f_n\} cannot be equicontinuous (i)(i)
However, since F\mathcal F is compact, take {fnk}\{f_{n_k}\} converges uniformly to some fFf\in\mathcal F, and {fnk}{f}\{f_{n_k}\}\cup \{f\} is equicontinuous, this contradicts with (i)(i)

Lemma 2. Equicontinuous implies uniformly equicontinuous

proof. Suppose F\mathcal F not u.e.c.
Take ϵ>0\epsilon > 0 s.t. n1,xn,ynK.fnF.xnyn<1/nfn(xn)fn(yn)ϵ\forall n\geq 1, \exists x_n,y_n \in K. \exists f_n\in \mathcal F. \|x_n-y_n\| < 1/n \land \|f_n(x_n)-f_n(y_n)\|\geq \epsilon hence we construct sequence {xn},{yn},{fn}\{x_n\}, \{y_n\}, \{f_n\}
Since KK is compact, take xnkaKx_{n_k}\rightarrow a \in K, then ynk=xnk(xnkynk)ay_{n_k} = x_{n_k}-(x_{n_k}-y_{n_k})\rightarrow a

F\mathcal F is equicontinous at aKδ>0,fn(x)fn(a)ϵ/2a\in K\Rightarrow \exists \delta > 0, \|f_n(x)-f_n(a)\|\leq \epsilon/2 for all xa<δ,fF\|x-a\|<\delta, f\in\mathcal F.
Since xnka,ynka,MN,mM.xnma<δynma<δx_{n_k}\rightarrow a, y_{n_k}\rightarrow a, \exists M\in \mathbb N, \forall m \geq M. \|x_{n_m}-a\|<\delta\land \|y_{n_m}-a\|<\delta
Therefore, mM\forall m\geq M

fnm(xnm)fnm(ynm)fnm(xnm)fnm(a)+fnm(a)fnm(ynm)<2(ϵ/2)=ϵ\begin{align*} \|f_{n_m}(x_{n_m})- f_{n_m}(y_{n_m})\|&\leq \|f_{n_m}(x_{n_m})- f_{n_m}(a)\| + \|f_{n_m}(a)- f_{n_m}(y_{n_m})\|\\&< 2(\epsilon/2)\\&=\epsilon \end{align*}

contradicts with assumption

Def'n. Totally bouded

SKS\subseteq K is an ϵ\epsilon-net of KK if KaSBϵ(a)K\subseteq \cup_{a\in S}B_\epsilon(a)
KK is totally bounded if it has a finite ϵ\epsilon-net ϵ>0\forall \epsilon > 0

Lemma 3. Bounded Implies Totally Bounded

If KRmK\subseteq \mathbb R^m bounded, then totally bounded.

proof. Let ϵ>0\epsilon > 0, choose N,Nmin{ϵ,1m}N, N \leq \min\{\epsilon, \frac{1}{\sqrt m}\}
KK bounded, hence L>0,x=(x1,...,xm)K,xiL,i\exists L > 0, \forall x = (x_1,...,x_m)\in K, |x_i|\leq L, \forall i
Let F={ki2N2}kiZ[L,L]F = \{\frac{k_i}{2N^2}\}_{k_i\in \mathbb Z}\subseteq [-L,L], then FF is a finite 12N2\frac{1}{2N^2}-net for [L,L][-L,L].
Let A={x1,...,xm}RmA = \{x_1,...,x_m\}\subseteq \mathbb R^m s.t. xiF,ix_i \in F, \forall i
Let A~={aA:Bϵ/2(x)K}\tilde A = \{a\in A: B_{\epsilon/2}(x)\cap K \neq \emptyset\}. Then, for each xA~x\in \tilde A, choose xaBϵ/2(a)Kx_a \in B_{\epsilon/2}(a)\cap K.
Take x=(x1,...,xm)Kx = (x_1,...,x_m)\in K for each i=1,...,m,aiFi = 1,...,m, \exists a_i \in F s.t. xiai<12N2|x_i-a_i|<\frac{1}{2N^2}
Then, xa=xiai2<m4N4=M/2N2N/2N2(2N)1<ϵ/2\|x-a\| = \sqrt{\sum |x_i-a_i|^2} < \sqrt{\frac{m}{4N^4}} = \sqrt M/2N^2 \leq N/2N^2 \leq (2N)^{-1} < \epsilon/2
Also, Bϵ/2(a)K,aA~B_{\epsilon/2}(a)\cap K\neq \emptyset, a\in \tilde A, so that xax_a is defined.
Then, xxaxa+xxa<ϵ/2+ϵ/2=ϵ\|x-x_a\|\leq \|x-a\|+\|x-x_a\|< \epsilon/2+\epsilon/2 = \epsilon

Lemma 4

If KK bounded, then KK contains a sequence {xi}i1\{x_i\}_{i\geq 1} dense in KK. Moreover, ϵ>0.NN\forall \epsilon > 0. \exists N\in\mathbb N s.t. {xi}iN\{x_i\}_{i\leq N} is an ϵ\epsilon-net for KK.

proof. For each kik\geq i, let BkB_k be a finite k1k^{-1}-net.
Take {xi}\{x_i\} be the sequence which lists the BkB_k consecutively, i.e. x0,...,xN0B0,xN0+1,...,xN1B1,..x_0,...,x_{N_0}\in B_0, x_{N_0+1}, ...,x_{N_1} \in B_1,..
Let xKx\in K, then k1.nk\forall k\geq 1. \exists n_k s.t. xnkBkx_{n_k}\in B_k and xxnk<k1\|x-x_{n_k}\|< k^{-1}, hence dense.
Also, given ϵ>0\epsilon > 0, choose k>ϵ1,{xi}iNkk > \epsilon^{-1}, \{x_i\}_{i\leq N_k} is a ϵ\epsilon-net.

Thrm. Arzela-Ascoli Theorem

FC(K,Rm)\mathcal F \subseteq C(K,\mathbb R^m) is compact IFF closed, bounded, euicontinuous

\Rightarrow proof. Suppose not closed, then take {fn}F\{f_n\}\subseteq \mathcal F s.t. fnf∉Ff_n\rightarrow f\not\in \mathcal F contradicts with compactness.
Suppose not bounded, take {fn}F\{f_n\}\subseteq \mathcal F that fn\|f_n\|_\infty\rightarrow\infty contradicts
and Lemma 1

\Leftarrow proof. Fix {fn}F\{f_n\} \subseteq \mathcal F, by the Lemma 4, {xi}K\exists \{x_i\}\subseteq K s.t. ϵ>0.{xi}iN\forall \epsilon > 0. \exists \{x_i\}_{i\leq N} is a ϵ\epsilon-net.
WTF {fnk}{fn}\{f_{n_k}\} \subseteq \{f_n\} s.t. fnk(xi)kLi,1iNf_{n_k}(x_i)\rightarrow^{k}L_i, \forall 1\leq i\leq N.
Let A0=NA_0=\mathbb N, since {fn(x1)}nA0\{f_n(x_1)\}_{n\in A_0} bounded, by Bolzano-Weierstrass Theorem, take the convergent subsequence, i.e. A1A0,limnA1fn(x1)=L1A_1\subseteq A_0, \lim_{n\in A_1}f_n(x_1) =L_1.
Inductively take A=A0A1A2...\mathcal A = A_0\supseteq A_1\supseteq A_2\supseteq ... be a decreasing sequence, s.t. limnAifn(xi)=Li\lim_{n\in A_i}f_n(x_i)=L_i
Then, for each k1k\geq 1, let nkn_k be the kkth element of AkA_k, i.e.

A1n1A2n2A3n3...\begin{matrix} &A_1 &n_1 & & \\ &A_2 & & n_2 &\\ &A_3 & & &n_3 \\ &... \end{matrix}

Since AnA_n is decreasing, for each i1i\geq 1, there are at most i1i-1 elements are not in AiA_i.
In particular, this implies limkfnk(xi)=limnAifn(xi)=Li\lim_k f_{n_k}(x_i) = \lim_{n\in A_i} f_n(x_i) = L_i
Let gk=fnkg_k = f_{n_k}, let ϵ>0\epsilon > 0, since F\mathcal F is equicontinuous, i.e. uniform equicontinuous. Take δ>0.xy<δf(x)f(y)<ϵ/3,fF\delta > 0. \|x-y\|<\delta\Rightarrow\|f(x)-f(y)\|<\epsilon/3, \forall f \in \mathcal F
By definition of {xi}\{x_i\}, take NN,{x1,...,xn}N\in\mathcal N, \{x_1,...,x_n\} is a δ\delta-net.
Since limkgk(xi)\lim_{k\rightarrow\infty} g_k(x_i) exists for all i1i\geq 1.
MN\exists M\in \mathbb N s.t. k,lM.1iNgn(xi)gl(xi)<ϵ/3\forall k,l\geq M. \forall 1\leq i\leq N\Rightarrow \|g_n(x_i)-g_l(x_i)\|<\epsilon/3
Since {x1,...,xN}\{x_1,...,x_N\} is a δ\delta-net, i,xix<δ\exists i, \|x_i-x\|<\delta

gk(x)gl(x)gk(x)gk(xi)+gk(xi)gl(xi)+gl(xi)gl(x)<ϵ\|g_k(x)-g_l(x)\|\leq \|g_k(x)-g_k(x_i)\| + \|g_k(x_i)-g_l(x_i)\| + \|g_l(x_i)-g_l(x)\|<\epsilon

Since {gk}\{g_k\} is uniform Cauchy, and C(K,Rm)C(K,\mathbb R^m) is complete, gkgC(K,Rm)g_k\rightarrow g\in C(K,\mathbb R^m)
Since F\mathcal F closed, gFg\in\mathcal F, therefore, compact.

Note that we only used closed at the very end. Therefore, If {fn}C([a,b])\{f_n\}\subseteq C([a,b]) and is bounded and equicontinuous, then it has a convergent subsequence.