Skip to content

Inequalities Related to Expecations

Markov's Inequality

Claim If \(X\geq 0\) with \(\mu <\infty\). Then for all \(a>0\)

\[P(X\geq a) \leq \mu/a\]

proof.

\[\begin{align*} P(X\geq a) &= \int \mathbb I(x\geq a) dF_X(x)\\ &\leq \int \frac{x}{a}\mathbb I(x\geq a) dF_X(x)\\ &\leq \mathbb E(X/a)\\ &= \mu /a \end{align*}\]

Chebychev's Inequality

Claim Let \(X\) be a r.v. with mean \(\mu\) and \(\sigma^2\). Then, for all \(a > 0\)

\[P(|X-\mu| \geq a\sigma) \leq a^{-2}\]

proof 1.

\[\begin{align*} P(|X-\mu | \geq a\sigma) &= \int \mathbb I(|x-\mu |\geq a\sigma) dF_X(x)\\ &\leq \int (\frac{|x-\mu|}{a\sigma})^2\mathbb I(|x-\mu |\geq a\sigma) dF_X(x)\\ &\leq \mathbb E(\frac{|x-\mu|}{a\sigma})^2\\ &= \sigma^2 \frac{1}{a^2\sigma^2}\\ &= a^{-2} \end{align*}\]

proof 2. Taking \(Y = (X-\mu)^2/\sigma^2\) and \(a = k^2\), using Markov's Inequality, in this case

\[P(|X-\mu| \geq a\sigma) = P((X-\mu)^2 \geq a^2\sigma^2) \leq \mathbb E((X-\mu)^2) / {a^2\sigma^2} = a^{-2}\]

Cauchy-Schwartz Inequality

Claim If \(X,Y\) are r.v. with finite second moment

\[\mathbb E(XY)^2 \leq \mathbb E(X^2)\mathbb E(Y^2)\]

where the equality holds IFF \(P(aX=bY) = 1\) for some \(a,b\in\mathbb R\)

proof. Note that we can consider the expectation as a inner product.

Corollary \(cov(X, Y)^2 \leq var(X)var(Y)\)

proof. By CS Ineq.

\[\begin{align*} cov(X, Y)^2 &= \mathbb E[(X-\mathbb E(X))(Y-\mathbb E(Y))]^2 \\ &\leq \mathbb E[(X-\mathbb E(X))^2]\mathbb E[(Y-\mathbb E(Y))^2]\\ &= var(X)var(Y) \end{align*}\]

Range of Correlation

Claim \(corr(X, Y) \in [-1, 1]\)

proof. By the definition of correlation and the corollary

\[[corr(X, Y)]^2 = \frac{cov(X, Y)^2}{var(X)var(Y)} \leq 1\]

Corollary \(Y=aX+b\) IFF \(corr(X, Y) = 1\times \text{sign}(a)\)

Additional Inequalities

Note that the following inequalities are given without proofs.

Young's Inequality

For \(p, q > 1\) with \(p^{-1} + q^{-1} = 1\) and \(x, y\geq 0\).

\[xy \leq \frac{x^p}{p} + \frac{y^q}{q}\]

with equality holds IFF \(x^p = y^q\)

Holder's Inequality

For \(p, q > 1\) with \(p^{-1}+q^{-1} = 1\).

\[\mathbb E(XY) \leq \mathbb E(|X|^p)^{-p} \mathbb E(|Y|^q)^{-q}\]

proof. The statement is obtained by treating expectation as an inner product, and CS inequality is a special case where \(p=q=2\).

Jensen's Inequality

For a convex function \(\psi\), \(\psi(\mathbb E(X)) \leq \mathbb E(\psi(X))\)

proof. This inequality can be easily derived from convexity definition

Lyapounov's Inequality

If \(\mathbb E(|X|^p)\) is finite for some \(p>0\), then \(\mathbb E(|X|^q) \leq \mathbb E(|X|^p)^{q/p}\) for all \(0 < q \leq p\).

proof. \(x^{p/q}\) is convex, apply Jensen's Inequality

Minkowski's Inequality

For \(p\geq 1, \|X+Y\|_p \leq \|X\|_p + \|Y\|_p\)