Inner Product Space and Fourier Series
Inner Products Spaces
An inner product \(\langle \cdot, \cdot\rangle :V\rightarrow \mathbb R\) is a function that satisfies
- positive definite \(\langle x,x\rangle > 0\) and \(\langle x,x\rangle =0\) IFF \(x\equiv0\)
- symmetry \(\langle x,y\rangle =\langle y,x\rangle\)
- bilinear \(\langle ax+cy,z\rangle =a\langle x,z\rangle +c\langle y,z\rangle\)
Example 1
On \(\mathbb R^n, x\cdot y = \sum_1^n x_i y_i\)
- \(x\cdot x =\sum^n x_i^2 \geq 0\)
- \(x\cdot y = \sum x_i y_i = \sum y_i x_i = y\cdot x\)
- \((ax+cy)\cdot z = \sum (ax_i + cy_i) z_i = a\sum x_i z_i + c\sum y_i z_i = ax\cdot z + cy\cdot z\)
Example 2
Let \(A_{n\times n}\) be a positive definite symmetric matrix, i.e. all its eigenvalues are strictly positive. Then \(\langle x\cdot y\rangle _A = x A y^T\) is an inner product on \(\mathbb R^n\)
Note that such \(A\) can be diagonalized into \(A=PDP^T\)
- \(\langle x,x\rangle _A = xAx^T = xPDPx^T = vDv^T = \sum v_k^2 \lambda_k \rangle 0\) (since \(A\) is definite, \(\lambda_k \rangle 0\))
- \(\langle x,x\rangle =0\) IFF \(\sum v_k^2 \lambda_k = 0\Rightarrow v_k = 0 \Rightarrow xP = 0\), since \(P\) is orthogonal, \(x=0\)
Thrm 1. Cauchy Schwarz inequality
For \(x,y\in (V,\langle ,\rangle ), |\langle x,y\rangle |\leq \langle x,x\rangle ^2\langle y,y\rangle ^2\)
proof. By positive definite, for \(t\in\mathbb R\), \(\langle x-ty, x-ty\rangle \geq 0\).
Take \(t = \frac{\langle x,y\rangle }{y,y}\),
Example 3
Over \(C[a,b]\), \(\langle f,g\rangle _{L^2} = \int_a^b f g dx\)
- \(\langle f,f\rangle _{L^2} = \int_a^b f^2 dx \geq 0\)
- \(\langle f,f\rangle _{L^2}=0\) IFF \(\int_a^b |f|^2 dx = 0\) IFF \(f(x)=0\) because \(f\) is continuous.
Assume \(f(x_0) > 0\), then by continuity, take \(I_\delta(x_0):=[x_0-\delta, x_0+\delta], \forall x\in I_\delta(x_0). f(x) > \epsilon > 0\) so that \(\int_a^b |f|^2 dx > \int_{I_\delta(x_0)} |f(x)|^2 dx > \epsilon^2\) contradicts with \(\langle f,f\rangle _{L^2}=0\) (other details to be filled)
By Cauchy Schwartz inequality,
Therefore, every inner product gives rise to a norm \(\|x\|_v := \sqrt{\langle x,x\rangle }\)
Def'n. Hilbert space
a complete inner product space is called Hilbert space
Completeness over inner product space A inner product space is complete if every Cauchy sequence \(x_n\) has a limit in the space. i.e.
Remark The space \(S:=(C[a,b], \|\cdot\|_{L^2})\) is not complete, but \(L^2([a,b])\) is the completion of \(S\). which means taking any Cauchy sequence, then it has a limit in \(L^2\). In another words, continuous functions can approximate any square integrable function in \(L^2\)-norm.
Thrm 2. Monotone Convergence Theorem
Take nonnegative \(f_n(x)\geq 0\), if \(f_1(x)\leq f_2(x) \leq \cdots\) then point-wise limit \(f_n(x)\rightarrow f(x)\) i.e. \(|f_n(x)-f(x)|\rightarrow 0\)
Corollary By MCT, \(\lim \int f_n = \int \lim f_n = \int f\)
Thrm 3. Dominated/Integral Convergence Theorem
If \(\{h_n\}\) satisfy
- \(|h_n(x)|\leq B(x)\), which \(B\) is an integrable function
- \(h_n(x)\rightarrow^{\text{point-wise}} h(x)\)
Then, \(\lim \int f_n = \int \lim f_n = \int f\)
Thrm 4. Completeness
The space \((L^2, \|\cdot\|_{L^2})\) is complete
proof. Take Cauchy sequence \(f_n \in L^2([a,b])\). By Cauchy, take subsequence \(f_{n,k}\) s.t. \(\|f_{n,k} - f_{n,k+1}\| \leq 2^{-k}\).
Let \(f(x):=f_{n,1}(x) + \sum (f_{n, k+1} - f_{n,k}(x))\). WTS \(f\in L^2 (i)\), \(f_{n,k}\rightarrow^{L^2} f (ii)\).
Define \(g:= |f_n,1| + \sum|f_{n,k+1}- f_{n,k}|\), \(S_M(g) = |f_n,1| + \sum^M|f_{n,k+1}- f_{n,k}|\), then \(f\leq g, S_M(f) \leq S_M(g)\)
Apply MCT to \(\{S_M(g)\}, 0\leq |f_{n,1}| \leq |f_{n,2}-f_{n,1}|\leq ..., S_1(g) \leq S_2(g) \leq S_3(g)\)
Then, WTS \(S_M(g)\rightarrow g(x)\), which suffices to show that the sequence \(g\) converges, a.k.a. \(g\in L^2\)
Thus we have that
We have Cauchy seuqnce \(f_n \in L^2\), WTS \(\|f_n -f\|_{L^2}\rightarrow 0\)
(i) Since \(|f|\leq g\) and \(g\in L^2, \int |f|^2 \leq \int |g|^2 < \infty\implies f\in L^2\)
(ii) \(\|f_n - f\|_{L^2}^2 = \int |f_n - f|^2 dx\rightarrow 0\).
Let \(h_k:=|f_{n,k}- f|^2\), then
so that \(f_{n,k}\rightarrow^{\text{p.w.}} f\) since \(g\in L^2\) so \(\lim_{k\rightarrow \infty} f_{n,k}(x)=f(x)\) exists
BY DCT, \(\lim_{k\rightarrow \infty} \int |h_k|^2 = \int \lim_{k\rightarrow \infty} |h_k|^2 =0\),
Therefore, \(f_{n,k}\rightarrow^{L^2}f\)
Then, expansion \(f_{n,k}\) to \(f_n\). i.e. \(f_n \rightarrow^{L^2} f\).
By Cauchy sequence of \(f_n\), if the sub-sequence converges to some limit, so that the whole sequence will do so.
Fourier Series
Def'n. Orthogonal
Given \(x,y\ in (V,\langle\cdot, \cdot\rangle)\), x,y are orthogonal if \(\langle x,y\rangle = 0\)
Example
\(x\circ y = \cos(\theta) |x||y|\), so when \(\theta = \pi /2, x\circ y = 0\)
Def'n. Orthogonal set
A collection of \(\{e_k\}\) is called orthonormal if \(\langle e_k,e_m\rangle = \mathbb I(k=m)\)
Thrm 4.
Every Hilbert space has orthonormal basis, i.e. \(\forall x\in H. x = \sum^\infty \langle x,e_k\rangle e_k\)
Example
Take \(e_k = (0,...,0,1,0)\) where \(1\) is at \(k\)th position, \(\{e_k\}\) is orthonormal set.
proof. \(e_k \cdot e_m = \sum^n (e_k)_i (e_m)_i = 1\mathbb I(k=m)\)
Example
\(\{1, \sqrt2\cos(n\theta), \sqrt2\sin(n\theta)\}\) is orthogonal for \((C([-\pi, \pi]), \|\cdot\|_{L^2})\)
proof. We have the followings hold
Def'n. Fourier Series
For function \(f\in L^2([a,b])\), the Fourier series is defined to be
where
Thrm. Carleson Hunt Theorem
If \(f\in L^2([-L,L])\), then \(f\) equals its Fourier series almost everywhere.
almost everywhere outside a measure zero set