Skip to content

Examples: Unconstrained Finite Dimensional Optimization

Example 1

Question

Let \(a\in\mathbb R\) and \(f_a:\mathbb R^2\rightarrow \mathbb R, f_a(x, y)= x^2 + 2y^2 + axy - y\).

Part (a)

Find the points satisfy FOC.

The partial derivative gives

\[\frac{\partial f_a}{\partial x} = 2x+ay, \frac{\partial f_a}{\partial y} = 4y+ax - 1\]

Set the derivatives to 0 to meet the FOC.
If \(a = 0\), then \(x = 0, y = 1/4\) satisfies FOC.
If \(a\neq 0\), then to make \(\begin{bmatrix}a&4\\2&a\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}\) has solutions, the reduced row echelon form gives \(\begin{bmatrix}a&4\\0&\frac{a^2}2- 4\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}1\\-1\end{bmatrix}\), If \(a = \pm 2\sqrt{2}\), then there is no local minimum, otherwise, we have the unique solution \(y = \frac{2}{8-a^2}, x = \frac1a(1-\frac{8}{8-a^2}) = \frac{-a}{8-a^2}\).
To summarize,
If \(a = 0\), then \(x=0, y=1/4\) satisfies the FOC If \(a = \pm 2\sqrt 2\), then there is no points satisfy the FOC
If \(a\neq 0\) and \(a\neq \pm2\sqrt2\), then \(x = \frac{-a}{8-a^2}, y = \frac{2}{8-a^2}\) satisfies the FOC.

Part (b)

Find the points satisfy SOC

The Hessian matrix gives

\[F_a = \begin{bmatrix}2&a\\a&4\end{bmatrix}\]

Note that \(F_a\) is positive semidefinite iff \(\det(F_a) = 2\times 4-a^2 > 0\), so that for any \(a\in(-2\sqrt 2, 2\sqrt 2)\), the points satisfies the SOC.

Part (c)

Prove the local minimum is actually global minimum.

proof 1. Prove by completing the square
Note that \(f_a(x, y) = \frac12\begin{bmatrix}x\\y\end{bmatrix}\cdot \begin{bmatrix}2&a\\a&4\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} - \begin{bmatrix}0\\1\end{bmatrix}\cdot\begin{bmatrix}x\\y\end{bmatrix}\)
Therefore, using completing the square method, let \(x^* = \begin{bmatrix}x^*\\y^*\end{bmatrix}\frac{1}{8-a^2}\begin{bmatrix}4&-a\\-a&2\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}\frac{-a}{8-a^2}\\\frac{2}{8-a^2}\end{bmatrix}\), then

\[f_a(x, y) = \frac12\begin{bmatrix}x-x^*\\y-y^*\end{bmatrix}\cdot \begin{bmatrix}2&a\\a&4\end{bmatrix}\begin{bmatrix}x-x^*\\y-y^*\end{bmatrix} - \frac12\begin{bmatrix}x^*\\y^*\end{bmatrix}\cdot \begin{bmatrix}2&a\\a&4\end{bmatrix}\begin{bmatrix}x^*\\y^*\end{bmatrix}\]

Note that when \(a\in (-2\sqrt2, 2\sqrt 2)\), the matrix \(\begin{bmatrix}2&a\\a&4\end{bmatrix}\) is positive-semidefinite, i.e. for any \(\begin{bmatrix}x\\y\end{bmatrix}\), we have \(\begin{bmatrix}x-x^*\\y-y^*\end{bmatrix}\cdot \begin{bmatrix}2&a\\a&4\end{bmatrix}\begin{bmatrix}x-x^*\\y-y^*\end{bmatrix}\geq 0\). Therefore, the minimum can only be reached when \(\begin{bmatrix}x-x^*\\y-y^*\end{bmatrix} = 0 \Rightarrow \begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}x^*\\y^*\end{bmatrix} = \begin{bmatrix}\frac{-a}{8-a^2}\\\frac{2}{8-a^2}\end{bmatrix}\)
proof 2. Prove by convexity
Let \(\vec x_1 = (x_1, y_1)\in \mathbb R^2, \vec x_2 = (x_2, y_2) \in \mathbb R^2\), let \(c\in [0, 1]\).
For \(c = 1\), obviously \(f_a(1x_1 +0x_2) = 1f_a(x_1) + 0 f_a(x_2)\), similarly for \(c=0\).
For \(c\in(0,1)\), denote \(Q = \begin{bmatrix}2&a\\a&4\end{bmatrix}\)

\[\begin{align*} f(c\vec x_1 + (1-c)\vec x_2) &= \frac 12(c\vec x_1 + (1-c)\vec x_2)^T Q (c\vec x_1 + (1-c)\vec x_2) - \begin{bmatrix}0\\1\end{bmatrix}(c\vec x_1 + (1-c)\vec x_2)\\ &= \frac12\big[ c^2\vec x_1^TQ\vec x_1 + c(1-c)\vec x_1^TQ\vec x_2+c(1-c)\vec x_2^TQ\vec x_1 + (1-c)^2\vec x_2^TQ\vec x_2 \big] \\ &\quad- \begin{bmatrix}0\\1\end{bmatrix}(c\vec x_1 + (1-c)\vec x_2) \end{align*}\]

Therefore,

\[\begin{align*} &\quad cf_a(\vec x_1) + (1-c)f_a(\vec x_2) - f_a(c_x1+(1-c)x_2)\\ &=\frac{1}{2}(c-c^2)\vec x_1^TQx_1 - c(1-c)\vec x_1^TQ\vec x_2-c(1-c)\vec x_2^TQ\vec x_1 +((1-c)-(1-c)^2)\vec x_2^TQ\vec x_2\\ &= \frac12c(1-c)[x_1^TQx_1-x_1^TQx_2-x_2^TQx_1+x_2^TQx_2]\\ &= \frac12c(1-c)(\vec x_1-\vec x_2)^TQ(\vec x_1-\vec x_2) \end{align*}\]

Note that when \(a\in(-2\sqrt 2, 2\sqrt 2)\), \(Q\) is positive semidefinite, hence \(\frac12c(1-c)(\vec x_1-\vec x_2)^TQ(\vec x_1-\vec x_2) \geq 0\). Therefore, \(cf_a(\vec x_1) + (1-c)f_a(\vec x_2) \geq f_a(c_x1+(1-c)x_2)\). By the definition of convex function, \(f_a\) is convex, and the local minimum is the global minimum.

Example 2

Question

Find the local minimum point(s) for \(f(x, y,z ) = (x-\frac y2)^2 + \frac34(y-2)^2 + z^2 -3\) on \(S = \{(x,y,z)\in\mathbb R^3 \mid x\leq 0, y \geq 0\}\), and prove the local minimum is actually a global minimum.

First of all, let \(g(x, y) = f(x, y, 0) = (x-\frac y2)^2 + \frac34(y-2)^2-3\). Obsever that \(\forall z\in\mathbb R. z^2 \geq 0\), hence minimizes \(f\) is equivalent to minimize \(g\) as having \(z=0\).

First, the partial derivative

\[\nabla g = (2x-y, 2y-x-3)\]
  1. \(x < 0, y > 0\)
    solves the system of equation that \(\nabla f = \vec0\),
\[x=1, y=2, z =0\]

does not lie in the set, there is no local min in the interior of \(S\)

  1. \(x = 0, y > 0\)
    Let the feasible direction be \(v = (v_1, v_2), v_1 \leq 0\) and want
\[\nabla f \cdot v = (2\cdot 0-y)v_1 + (2y-0-3)v_2 =-yv_1 + (2y-3)v_2\geq 0\]

Note that for any \(v_1 \leq 0, -yv_1 \geq 0\) so that the condition is equivalent to have \(2y-3 = 0\Rightarrow y = \frac32\), and the candidate is \((0, \frac32)\)

  1. \(x < 0, y = 0\) Let the feasible direction be \(v = (v_1, v_2), v_2 \geq 0\) and want
\[\nabla f \cdot v = (2x-0)v_1 + (2\cdot 0-x-3)v_2 =2xv_1 - (x+3)v_2\geq 0\]

Note that for direction \((1/2, 1), \nabla f\cdot v = 2x\cdot\frac12 - (x + 3) = -3 < 0\) for any \(x\), hence there is no local min in this case.

  1. \(x, y = 0\) Let the feasible direction be \(v = (v_1, v_2), v_1 \leq 0, v_2 \geq 0\) and want
\[\nabla f \cdot v = 0v_1 + (-3)v_2 = -3v_2\geq 0\]

does not hold for \(v_2 \geq 0\), hence no local minimum.

Example 3

Question

Show that \(xx^T\), where \(x\in\mathbb R^n\), is positive semidefinite.

Let \(x\in\mathbb R^n, a\in\mathbb R^n\).

\[\begin{align*} a^T(xx^T)a &= (a^Tx)(x^Ta)\\ &= (x^Ta)^T(x^Ta) &\text{take transpose}\\ &= \|x^Ta\|^2\\ &\geq 0 \end{align*}\]

Therefore, by definition of positive semidefinite, \(xx^T\) is positive semidefinite

Example 4

Question

Let \(f(x) = b\cdot Ax\), \(A\) is \(n\times m\) matrix, \(x\in\mathbb R^m, b\in\mathbb R^n\), show that \(\nabla f(x)=A^Tb\).

First, note that

\[\begin{align*} b\cdot Ax &= \begin{bmatrix}b_1\\\vdots\\b_n \end{bmatrix}\cdot \begin{bmatrix} A_{11}&\cdots&A_{1m}\\ \vdots&\ddots&\vdots\\ A_{n1}&\cdots&A_{nm} \end{bmatrix} \begin{bmatrix}x_1\\\vdots\\x_m \end{bmatrix}\\ &= \begin{bmatrix}b_1\\\vdots\\b_n \end{bmatrix} \cdot \begin{bmatrix}\sum_{i=1}^mA_{1i}x_i\\\vdots\\\sum_{i=1}^mA_{ni}x_i \end{bmatrix}\\ &= \sum_{j=1}^n b_j\sum_{i=1}^m A_{ji}{x_i} \end{align*}\]

Therefore, for each component \(x_i\), we can easily derive the partial derivative as

\[\frac{\partial f}{\partial x_i} =\sum_{j=1}^n b_j A_{ji}\]

and so that \(\nabla f = \begin{bmatrix}\sum_{j=1}^n b_j A_{j1}\\\vdots\\\sum_{j=1}^n b_j A_{jm}\end{bmatrix} = A^Tb\)

Part (b)

Let \(f(x) = x\cdot Ax\), show that \(\nabla f(x) = (A+A^T)x\).

\[\begin{align*} \nabla (x^TAx) &= \nabla(\sum_{i=1}^n \sum_{j=1}^n A_{ij}x_ix_j)\\ &= \begin{bmatrix}\sum_{i=1}^n A_{i1}x_i + \sum_{j=1}^n A_{1j}x_j\\...\\\sum_{i=1}^n A_{in}x_i + \sum_{j=1}^n A_{nj}x_j\end{bmatrix}\\ &= Ax + A^Tx\\ &= (A+A^T)x \end{align*}\]

Example 5

Question

Let \(f:\mathbb R^{2n} \rightarrow \mathbb R, f(x, y) = \frac12|Ax-By|^2\), where \(A,B\) are \(m\times n\) matrices, \(x, y\in\mathbb R^n\)

Part (a)

Find \(\nabla f, \nabla^2f\)

Note that \(f(x, y) = \frac12 (Ax-By)^T(Ax-By)\), let \(g(x, y) = Ax-By, h(a) = a^Ta\) so that \(f(x, y) = \frac12h(g(x, y))\). Therefore, using chain rule,

\[D f(x,y) = \frac12D (h\circ g)(x,y) = \frac12Dh(g(x,y)) \cdot Dg(x,y)\]

Note that \(h(a) = a^T a = a^TI a\) where \(I\) is the identity matrix, so that by Question 4 Part (b), \(Dh(a) = (I+I^T)a = 2a\).
Then, note that \(\frac{\partial g}{\partial x} = A, \frac{\partial g}{\partial y} = -B\), hence \(Df(x, y) = \begin{bmatrix}[A]&[-B]\end{bmatrix}\), i.e. matrix \(A, -B\) stacked horizontally.
Therefore,

\[\nabla f(x, y) = \frac12 \cdot 2 [Ax-By]\cdot \begin{bmatrix}[A]\\ [-B]\end{bmatrix} = \begin{bmatrix}[A]& [-B]\end{bmatrix}^T(Ax-By)\]

Then, note that \((Ax-By)^T\begin{bmatrix}[A]& [-B]\end{bmatrix} = \begin{bmatrix}[A]& [-B]\end{bmatrix}^T Ax - \begin{bmatrix}[A]& [-B]\end{bmatrix}^TBy\). Therefore,

\[\frac{\partial}{\partial x} \begin{bmatrix}[A]& [B]\end{bmatrix}^T Ax - \begin{bmatrix}[A]& [B]\end{bmatrix}^TBy = \begin{bmatrix}[A]& [-B]\end{bmatrix}^T A\]
\[\frac{\partial}{\partial y} \begin{bmatrix}[A]& [B]\end{bmatrix}^T Ax - \begin{bmatrix}[A]& [B]\end{bmatrix}^TBy = \begin{bmatrix}[-A]& [B]\end{bmatrix}^T B\]

Rewrite into matrix form,

\[\nabla^2 f = \begin{bmatrix}[A^TA]& [-B^TA]\\ [-A^TB] & [B^TB]\end{bmatrix}\]

Part (b)

If \((x_0, y_0)\) satisfies \(Ax_0 = By_0\), then \((x_0, y_0)\) is a local minimum.

Note that \(\nabla f(x_0, y_0) = \begin{bmatrix}[A]& [B]\end{bmatrix}^T(Ax_0-By_0) = \begin{bmatrix}[A]& [B]\end{bmatrix}^T0 = 0\) which satisfies FOC.

Also, note that the Hessian matrix can be rewrite as

\[\nabla^2 f = \begin{bmatrix}[A^TA]& [-B^TA]\\ [-A^TB] & [B^TB]\end{bmatrix} = \begin{bmatrix}A\\-B\end{bmatrix}^T\begin{bmatrix}A\\-B\end{bmatrix}\]

so that it is a positive semidefinite matrix, which satisfy the SOC.

Example 6

Question

Let \(g\) be a convex function on \(\mathbb R^n\), \(f\) be a linear, nondecreasing function on a single variable.

Part (a)

Prove \(F:=f\circ g\) is convex.

\[\begin{align*} F(\theta x + (1-\theta) y) = f(g(\theta x + (1- \theta) y))) \end{align*}\]

By convexity of \(g\),

\[g(\theta x + (1- \theta) y) \leq \theta g(x) + (1-\theta)g(y)\]

By non-decreasing of \(f\)

\[f(g(\theta x + (1- \theta) y)) \leq f(\theta g(x) + (1-\theta)g(y))\]

By linearity of \(f\)

\[f(\theta g(x) + (1-\theta)g(y)) = \theta f(g(x)) + (1-\theta) f(g(y)) = \theta F(x) + (1-\theta) F(y)\]

By the definition of convex, the claim is proven.

Part (b)

\(\nabla^2F(x)\) is positive semidefinite.

\[\begin{align*} \nabla^2F(x) &= \frac{\partial}{\partial x}(\frac{\partial f}{\partial g}\cdot \frac{\partial g}{\partial x}) &\text{chain rule}\\ &= (\frac{\partial}{\partial x}\frac{\partial f}{\partial g})\cdot \frac{\partial g}{\partial x} + \frac{\partial f}{\partial g}\cdot(\frac{\partial }{\partial x}\frac{\partial g}{\partial x})&\text{product rule}\\ &= (\frac{\partial^2 f}{\partial g^2}\cdot \frac{\partial g}{\partial x})\cdot \frac{\partial g}{\partial x} + \frac{\partial f}{\partial g}\cdot \frac{\partial^2 g}{\partial x^2} &\text{chain rule} \end{align*}\]

Rewrite the derivatives with the matrix multiplication notation

\[\begin{align*} \nabla^2 F(x) &= [d^2 f(g(x)) \nabla g(x)]\nabla g(x)^T + d f(g(x))\nabla^2 g(x)\\ &= d^2 f(g(x))\nabla g(x)\nabla g(x)^T + df(g(x))\nabla^2 g(x) \end{align*}\]

Because \(f\) is linear, \(d^2f(g(x)) = 0\)
Because \(f\) is non-decreasing, \(df(g(x)) \geq 0\)
Because \(g\) is convex, \(\nabla^2 g(x)\) is positive semidefinite
Also, note that \(\nabla g(x) \nabla g(x)^T\) is positive semidefinite Therefore, a positive semidefinite matrix scaled by a positive number is still positive semidefinite.

Example 7

Question

\(f:\mathbb R^2\rightarrow \mathbb R\) is non-negative convex function, \(F:\mathcal A\rightarrow \mathbb R, F(\mu) = \int_0^1f(\mu(x), \mu'(x))dx\) where \(\mathcal A = \{\mu\in C^1: [0,1]\rightarrow\mathbb R\}\). Prove \(F\) is convex on \(\mathcal A\).

Let \(a\in (0, 1), u_1, u_2\in \mathcal A\).

\[F(au_1 + (1-a)u_2) = \int_0^1f(au_1(x) + (1-a)u_2(x), (au_1 + (1-a)u_2)'(x)))dx\]

Using chain rule

\[= \int_0^1f(au_1(x) + (1-a)u_2(x), au_1'(x) + (1-a)u_2'(x))dx\]

Note that for any \(x\in [0, 1]\), by convexity of \(f\)

\[f(au_1(x) + (1-a)u_2(x), au_1'(x) + (1-a)u_2'(x)) \leq af(u_1(x), u_1'(x)) + (1-a) f(u_2(x), u_2'(x))\]

Because \(f\) is non-negative

\[\begin{align*} &\quad\int_0^1 f(au_1(x) + (1-a)u_2(x), au_1'(x) + (1-a)u_2'(x))dx\\ &\leq \int_0^1 af(u_1(x), u_1'(x)) + (1-a) f(u_2(x), u_2'(x))dx\\ &= a\int_0^1 f(u_1(x), u_1'(x))dx + (1-a)\int_0^1 f(u_2(x), u_2'(x))dx\\ &= aF(u) + (1-a)F(u) \end{align*}\]

Example 8

Question

If \(f:\Omega\rightarrow \mathbb R\) is covex on \(\Omega=(a,b)\), then \(f\) is also continuous.

lemma If \(f:\Omega\rightarrow\mathbb R\) is convex, then \(\forall x_1, x, x_2 \in \Omega, x_1\leq x\leq x_2. \frac{f(x) - f(x_1)}{x-x_1} \leq \frac{f(x_2) - f(x_1)}{x_2-x_1} \leq \frac{f(x_2) - f(x)}{x_2-x}\).

proof. Let \(x_1, x, x_2\in \Omega. x_1 < x < x_2\), note that \(\frac{x_2 - x}{x_2 - x_1} \in [0, 1]\) Since \(f\) is convex,

\[f(x) = f(\frac{x_2 - x}{x_2 - x_1}x_1 + \frac{x-x_1}{x_2 - x_1} x_2) \leq \frac{x_2 - x}{x_2 - x_1}f(x_1) + \frac{x- x_1}{x_2 - x_1}f(x_2)\]

Then, the inequalities can be easily derived as

\[\begin{align*} \frac{f(x) - f(x_1)}{x-x_1} &\leq \frac{1}{x-x_1}\big[\frac{x_2 - x}{x_2 - x_1}f(x_1) + \frac{x- x_1}{x_2 - x_1}f(x_2) - f(x_1)\big]\\ &= \frac1{x-x_1}\frac{x-x_1}{x_2-x_1}(f(x_2)-f(x_1))\\ &= \frac{f(x_2) - f(x_1)}{x_2-x_1} \end{align*}\]

Similar derivation holds for

\[\frac{f(x_2) - f(x)}{x_2 - x} \geq \frac{f(x_2) - f(x_1)}{x_2-x_1}\]

Claim If \(f\) is convex, then \(\forall x_0\in (a, b), \lim_{x\rightarrow x_0} f(x) = f(x_0)\) (\(f\) is continuous using the limit definition).

proof. Let \(c, d \in (a, b), a<c<x_0 < d<b\).
Take functions \(l_1(x) = \frac{f(x_0) - f(c)}{x_0 - c}(x-x_0) + f(x_0), l_2(x) = \frac{f(d) - f(x_0)}{d - x_0}(x-x_0) + f(x_0)\), where \(l_1\) is the line pass through \((c, x_0)\) and \(l_2\) is the line pass through \((x_0, d)\).
Then, for any \(x\in (x_0, d)\), since \(f\) is convex and use our lemma above, we have

\[\frac{f(x - x_0)}{x-x_0} \leq \frac{f(d) - f(x_0)}{d - x_0}\]
\[\frac{f(x) - f(c)}{x-c} \geq \frac{f(x_0) - f(c)}{x_0 - c}\]

so that

\[f(x) = \frac{f(x - x_0)}{x-x_0}(x-x_0) + f(x_0) \leq \frac{f(d - x_0)}{d-x_0}(x-x_0) + f(x_0) = l_2(x)\]
\[f(x) = \frac{f(x) - f(c)}{x-c}(x-x_0) + f(x_0) \geq \frac{f(x_0-c)}{x_0-c}(x-x_0) + f(x_0) = l_1(x)\]

Since \(\forall x\in (x_0, d), l_1(x)\leq f(x) \leq l_2(x)\) and \(\lim_{x\rightarrow x_0+}l_1(x) = l_1(x_0) = f(x_0) = l_2(x_0) = \lim_{x\rightarrow x_0+}l_2(x)\), by squeeze theorem

\[\lim_{x\rightarrow x_0+}f(x) = f(x_0)\]

With the similar arguments, we can show that \(\forall x\in (c, x_0), l_2(x) \leq f(x) \leq l_1(x)\), and use squeeze theorem,

\[\lim_{x\rightarrow x_0-}f(x) = f(x_0)\]

Finally, the two limits from both sides conclude that

\[\lim_{x\rightarrow x_0}f(x) = f(x_0)\]

Therefore, we have shown that \(\forall x\in (a, b), \lim_{x\rightarrow x_0}f(x) = f(x_0)\), which means \(f\) is continuous on \((a,b)\)

Example 9

Question

If \(f:\Omega\rightarrow \mathbb R\) is continuous and convex and exists some maximum on the interior of \(\Omega\), then \(f\) is a constant function.

proof. Let \(x_0 \in \Omega_{int}\) where \(f(x_0)\) is the maximum.
Assume \(f\) is not constant. Take \(x_1 \in \Omega\) s.t. \(f(x_1) < f(x_0)\).
Since \(x_0\) is an interior point, take some \(t\in(0, 1)\) s.t. \(x_2 = x_0 - t(x_1 - x_0), x_2 \in B(x_0, \epsilon)\subset \Omega\) for some \(\epsilon > 0\).
Then, \(x_2, x_0, x_1\) forms a line and \(x_0 = \frac{t}{1+t}x_1 + \frac{1}{1+t}x_2\).
By our assumption, \(f(x_1) < f(x_0), f(x_2) \leq f(x_0)\), hence exists \(c = \frac{1}{t} \in (0, 1)\)

\[\frac{1}{1+t}f(x_1) + \frac{t}{1+t}f(x_2) < \frac{1}{1+t}f(x_0) + \frac{t}{1+t}f(x_0) = f(x_0)\]

This contradicts with the fact that \(f\) is convex, by contradiction, \(f\) must be a constant function.

Example 10

Question

Let \(f: \Omega\rightarrow \mathbb R, f(x): a\cdot x + b\) where \(\Omega\) is compact and convex subset of \(\mathbb R^n\).

Part (a)

If \(a\neq 0\), then any minimizer of \(f\) must be on \(\partial \Omega\).

proof. Suppose exists some minimizer \(x_0 \in \Omega_{int}\), then take some \(t > 0\) s.t. \(x = x_0 - ta \in B(x_0, \epsilon) \subset \Omega\)

\[f(x) = a\cdot (x_0 - ta) + b = a\cdot x_0 - t\|a\|^2 + b = f(x_0) - t\|a\|^2\]

If \(a\neq 0\), then \(t\|a\|^2 > 0, f(x) < f(x_0)\), \(x_0\) is not a minimizer. By contradiction, the minimizer must be on \(\partial \Omega\).

Part (b)

Suppose \(g(x) = \|x\|^2 + f(x)\), under what condition of \(a\) can you guarantee that the minimizers do not occur in the interior of the set \(\Omega\)?

Note that \(\nabla g(x) = 2x + a\). Note that a point \(x_*\) is not minimizer means that exists a feasible direction \(d \in \mathbb R^n\) s.t. \(\nabla g(x_*) < 0\).
Because \(\|x\|^2 + f(x)\) is continuous on \(\mathbb R^n\), for some interior point \(x_*\), all directions are feasible, therefore \(x_*\) is not a minimizer implies that \(\nabla g(x_*) =2x_* + a \neq 0\).
Therefore, to guarantee that any interior point is not a minimizer, we want \(a\) to satisfy that \(\forall x\in\Omega_{int}, 2x +a \neq 0\)

Example 11

Question

If \(f(x):\mathbb R^n\rightarrow\mathbb R\) is convex, then \(g(x, z) : \mathbb R^n \times \mathbb R \rightarrow \mathbb R, g(x, z) := f(x) + \|x+z\|^2\) is also convex.

proof. Let \(x_1, z_1, x_2, z_2\in \mathbb R^n, c\in [0, 1]\), consider

\[\begin{align*} g(c(x_1, z_1) + (1-c)(x_2, z_2)) &= f(cx_1 + (1-c)x_2) + \|cx_1 + (1-c)x_2 + cz_1 + (1-c)z_2\|^2\\ &\leq cf(x_1) + (1-c)f(x_2) &f\text{ is convex}\\ &\quad + \|cx_1 + cz_1\|^2 + \|(1-c)x_2 + (1-c)z_2\|^2 &\text{triangular inequality}\\ &= cf(x_1) + c\|x_1+z_1\|^2 + (1-c)f(x_2) + (1-c)\|x_2 + z_2\|^2\\ &= cf(x_1, z_1) + (1-c)f(x_2, z_2) \end{align*}\]

By definition of convexity, \(g\) is convex

Example 12

Question

For \(f: \mathbb R^n \rightarrow \mathbb R\) be \(C^1\) function, define \(M = \{(x, f(x))\in \mathbb R^{n+1}\}\), given \(p = (x_0, f(x_0)) \in M\), find the tangent space \(T_pM\).

Define \(g(x, z) = f(x) - z\), note that \(\nabla g(x, z) = [\nabla f(x), -1]\in\mathbb R^{n}\times \mathbb R\).
Then, note that \(g(p) = 0\) and the equation of the tangent plane where \(p\) is on the plane is given as

\[\begin{align*} \nabla g(x_0, f(x_0))\cdot ((x, z) - (x_0, f(x_0))) &= 0\\ \nabla f(p)\cdot(x-x_0) + (-1)(z-f(x_0))&= 0\\ \nabla f(p) \cdot(x-x_0) + f(x_0)&=z \end{align*}\]

Therefore, the tangent space is given as

\[T_pM = \{(x, \nabla f(p)\cdot(x-x_0) + f(x_0): x\in\mathbb R^n\}\]