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Figure 1: Cubic Craft turns triangle meshes (grey) into cubic-styled meshes (green)

ABSTRACT
We present a stylization tool to automatically manipulate triangle

meshes into a cubic style. Our tool uses a cubic stylization algo-

rithm[Liu and Jacobson 2019] to cubify the user’s provided meshes.

The algorithm extends the as-rigid-as-possible energy [Sorkine and

Alexa 2007] with an additional L1 regularization, hence can work

seamlessly with ADMM optimization. Cubic stylization works only

on the vertex positions, hence preserving the geometrical details

and topology. In addition, we implemented the algorithm with GPU

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

acceleration and achieves real-time interactive editing. We also cre-

ated a user-friendly interaction surface to let users easily change the

algorithm’s hyperparameter and cubify their own mesh. With our

tool, 3D artists can create Minecraft-styled objects with ease. Our

code is available at https://github.com/haoda-li/CS284A-cubic-craft.
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1 INTRODUCTION
With the increasing availability of image stylization filters and non-

photorealistic rendering techniques, creating artistic images has

become much more accessible to non-professional users. However,

the direct stylization of 3D shapes and non-realistic modeling has

not yet been given as much attention. Despite the advancements

in technology, professional industries like visual effects and video

games still rely on trained modelers to meticulously create non-

realistic geometric assets. This is because exploring geometric styles

presents a greater challenge, as it involves dealing with arbitrary

topologies, curved metrics, and non-uniform discretization. While

image stylization tools have made it easier to generate artistic

imagery, there is still a lack of effective tools for generating artistic

geometry, which remains a major obstacle to the development of

geometric stylization.

The focus of this paper is on a specific style of sculpture, namely

the cubic style. This style has been prevalent throughout art history

(ancient sculptures) and modern game history (Minecraft). In this

work, we have developed a stylization tool cubic stylization based

on GPU that takes a 3D shape as input and outputs a deformed

shape that has the same style as cubic sculptures. This tool is aimed

at helping artists and designers achieve the cubic style more easily

and efficiently, while also providing a new way to explore and

experiment with this timeless artistic tradition.

Our implemented method cubic stylization formulates the task as

an energy optimization problem, which preserves the geometric de-

tails of a shape while transforming it into a cubic form. Specifically,

this energy function combines an as-rigid-as-possible (ARAP) en-

ergy with a special L1 regularization. This energy can be minimized

efficiently using the local-global approach with the Alternating

Direction Method of Multipliers (ADMM). This method has strong

flexibility that allowing artists and designers to achieve a wide

range of stylistic variations within the cubic style, providing them

with greater creative freedom and expressive potential.

Our main contributions are summarized as follows:

• We implementedGPU-accelerated cubic stylization algorithm,

which allows real-time cubic style object generation and ren-

dering.

• We created a user-friendly GUI to interact with our algorithm.

Users can easily change the hyperparameter of the algorithm

and observe different results.

2 RELATEDWORKS
In this section, our primary focus is on exploring methods for

processing geometry. Specifically, we will be discussing various

techniques for studying geometric styles and deformation methods

that share common technical similarities. Our aim is to provide a

comprehensive overview of these methods and their applications

and to highlight their significance in the field of geometry process-

ing.

2.1 Shape Deformation
The subfield of shape deformation has been the subject of consid-

erable research in computer graphics and related fields. Several

notable works have contributed to this area, including the as-rigid-

as-possible (ARAP) energy model [Sorkine and Alexa 2007], which

Figure 2: Shape deformation preserves vertex attributes

has become a popular method for shape deformation due to its

ability to preserve the rigid structure of the object being deformed.

Another important contribution is the Laplacian-based deformation

technique [Sorkine et al. 2004], which uses the Laplacian operator

to deform a shape while preserving its surface details. In addition,

several works have explored the use of physically-based deforma-

tion models, such as the finite-element method and the mass-spring

system [Nealen et al. 2006].

More recent work in shape deformation has focused on extending

these techniques to handle more complex shapes and deformation

scenarios. For example, the Cage-based deformation method [Le

and Deng 2017] uses a cage mesh to define the deformation space,

allowing for more intuitive and flexible deformation. Other works

have explored the use of machine learning techniques, such as

neural networks, for shape deformation [Li et al. 2022].

The subfield of shape deformation has made significant contribu-

tions to the field of computer graphics and related disciplines and

continues to be an active area of research with numerous exciting

directions for future exploration. Our cubic stylization is also a

specific kind of shape deformation that combines ARAP energy

term and a L1 regularization term.

2.2 Different Geometric Style
Research on different geometric styles has been a topic of interest

in computer graphics and related fields. Two main approaches have

been taken to explore this area: discriminative geometric styles and

generative geometric styles.

Discriminative geometric styles focus on identifying and analyz-

ing different styles in existing geometry. For example, the work by

Kim et al. [Kim et al. 2013] proposes a method for identifying and

characterizing different geometric styles in furniture design, while

the work by Zhou et al. [Zhou et al. 2016] focuses on identifying

different styles in fashion design.

On the other hand, generative geometric styles aim to create new

geometry in a particular style. One notable example is the work

by Huang et al. [Huang et al. 2018], which proposes a method for

generating 3D models in a particular style using a generative adver-

sarial network (GAN). Another example is the work by Kalogerakis

et al. [Kalogerakis et al. 2012], which uses a probabilistic model to

generate 3D shapes with a particular style.

Overall, research on different geometric styles has led to a deeper

understanding of the principles and characteristics of different

styles in various domains, as well as the development of methods

for creating new geometry in a particular style. These techniques
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Figure 3: Cubified Mesh with as-rigid-as-possible deforma-
tion

have potential applications in a variety of fields, such as architecture,

product design, and entertainment.

3 METHOD
Our method is based on cubic stylization [Liu and Jacobson 2019],

a method to deform the input mesh into a cubic stylized mesh. Gen-

erally, the method adds a new L1 regularization on the deformation

with As-rigid-as-possible (ARAP) [Sorkine and Alexa 2007]energy

optimization. By regularizing each vertex’s normals to align with

the axis, the mesh can have a cubic style, while maintaining the

local geometric details.

The problem description is illustrated as follows: given a triangle

mesh 𝑆 = (𝑉 , 𝐹 ) and a set of constraints on vertex positions. We

want to output a deformed shape �̃� . The output shape will have

each sub-component in the style of axis-aligned cubes and will

retain the geometric details of the original mesh.

We will describe our method and implementation in the fol-

lowing sections: In section 3.1, we will talk about the As-rigid-

as-possible (ARAP) Deformation [Sorkine and Alexa 2007], and

elaborate on its energy functions. Then we will talk about cubic

Stylization [Liu and Jacobson 2019] in section 3.2. The implementa-

tion part is in section 3.3.

3.1 As-rigid-as-possible Deformation
The thought of ARAP energy is very intuitive: given the cell 𝐶𝑖

corresponding to vertex 𝑖 , and its deformed version 𝐶𝑖 , ARAP de-

fines the approximate rigid transformation between the two cells

by observing the edges emanating from the vertex 𝑖 in 𝑆 and 𝑆 ,

where 𝑆 and 𝑆 denote the original triangle mesh and the deformed

triangle mesh. Note that 𝑆 should have the same connectivity as

𝑆 . If the deformation 𝐶𝑖 → 𝐶𝑖 is rigid, there must exists a rotation

matrix 𝑅𝑖 such that:

�̃�𝑖 − �̃�𝑗 = 𝑅𝑖 (𝑉𝑖 −𝑉𝑗 ),∀𝑗 ∈ N (𝑖) (1)

Figure 4: Our GUI allows users to tune parameters and per-
form deformation

N(𝑖) denotes the set of vertices connected to vertex 𝑖 , also called

the one-ring neighbors.

When the deformation is not rigid, we can still find the best

approximating rotation matrix 𝑅𝑖 that fits the above equations in a

weighted least squares sense, i.e., minimizes

𝐸 (𝐶𝑖 ,𝐶𝑖 ) =
∑︁
𝑖∈𝑉

∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗 ∥𝑅𝑖𝑑𝑖 𝑗 − ˜𝑑𝑖 𝑗 ∥2𝐹 (2)

where𝑤𝑖 𝑗 is the cotangent weight [Pinkall and Polthier 1993] be-

tween vertex 𝑖 and vertex 𝑗 , and𝑑𝑖 𝑗 = 𝑉𝑖−𝑉𝑗 and ˜𝑑𝑖 𝑗 = �̃�𝑖−�̃�𝑗 . What

we need is to solve for vertex position �̃�𝑖 and per-vertex rotations

𝑅𝑖 that minimizes the energy function above.

For deformation, we are given user-defined constraints on some

vertex positions and we need to update all other vertices to mini-

mize the energy. Sorkine and Alexa uses alternating minimization

strategy. For each iteration, we first fix vertex positions to find

the optimal rotations for each vertex, and then fix the rotations

to update vertex positions. The rotation updates only depends on

the one-ring neighbor for each vertex, hence we call it a local step.

We will talk more details about local steps in the next section. The

vertices update, or the global step, can be directly derived by setting

the partial derivative w.r.t. each vertex position to 0. Eventually, we

need to solve a system of 3𝑁 equations of 3𝑁 unknowns, where

each vertex corresponds to the equation∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗
˜𝑑𝑖 𝑗 =

∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗

2

(𝑅𝑖 + 𝑅 𝑗 )𝑑𝑖 𝑗 (3)

3.2 Cubic Stylization
In this section, we will illustrate the cubic stylization algorithm.

Intuitively, an object is cubic style if its normals are aligned with the

three dominant directions. Therefore, Liu and Jacobson proposed an

additional L1 regularization term on the rotated normal. Combining

with the ARAP energy, the full energy term is listed as follows:

𝐸 (𝐶𝑖 ,𝐶′
𝑖 ) =

∑︁
𝑖∈𝑉

∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗

2

∥𝑅𝑖𝑑𝑖 𝑗 − ˜𝑑𝑖 𝑗 ∥2𝐹 + 𝜆𝑎𝑖 ∥𝑅𝑖�̃�𝑖 ∥1 (4)

In the L1 regularization term, �̂�𝑖 denotes the area-weighted unit

normal vector of 𝑣𝑖 and 𝑎𝑖 is the barycentric area of 𝑣𝑖 . and 𝜆 is the

"cubeness" parameter.
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𝜆 = 0 𝜆 = 0.1 𝜆 = 0.2

𝜆 = 0.4 𝜆 = 0.8 𝜆 = 1.6

Figure 5: Meshes with different cubeness

The local step involves finding the rotation matrix 𝑅1, · · · , 𝑅𝑛 ,
for each vertex 𝑖 , we are to optimize:

𝑅∗𝑖 = arg min

𝑅𝑖 ∈𝑆𝑂 (3)

∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗

2

∥𝑅𝑖𝑑𝑖 𝑗 − ˜𝑑𝑖 𝑗 ∥2𝐹 + 𝜆𝑎𝑖 ∥𝑅𝑖�̃�𝑖 ∥1 (5)

note that the ARAP energy can be expressed in matrix formations

1

2

(𝑅𝑖𝐷𝑖 − �̃�𝑖 )𝑇𝑊𝑖 (𝑅𝑖𝐷𝑖 − �̃�𝑖 ) =
1

2

∥𝑅𝑖𝐷𝑖 − �̃�𝑖 ∥2𝑊𝑖
(6)

where 𝐷𝑖 , �̃�𝑖 ∈ R3×|N(𝑖 ) |
are stacked rim/spoke edge vectors and

𝑊𝑖 is the diagonal matrix of 𝑤1, ...,𝑤𝑛 . Then, write 𝑧 = 𝑅𝑖�̂�𝑖 , we

can turn the formation into

minimize𝑧,𝑅𝑖

1

2

∥𝑅𝑖𝐷𝑖 − �̃�𝑖 ∥2𝑊𝑖
+ 𝜆𝑎𝑖 ∥𝑧∥1 (7)

subject to 𝑧 − 𝑅𝑖�̂�𝑖 = 0 (8)

Now We can solve the local step using the alternating direction

method of multipliers (ADMM) updates [Boyd et al. 2011]. Applying

ADMM, the update steps are

𝑅𝑘+1𝑖 = argmin

1

2

∥𝑅𝑖𝐷𝑖 − �̃�𝑖 ∥2𝑊𝑖
+ 𝜌𝑘

2

∥𝑅𝑖�̂�𝑖 − 𝑧𝑘 + 𝑢𝑘 ∥2
2

(9)

𝑧𝑘+1 = argmin 𝜆𝑎𝑖 ∥𝑧∥1 +
𝜌𝑘

2

∥𝑅𝑘+1𝑖 �̂�𝑖 − 𝑧 + 𝑢𝑘 ∥2
2

(10)

�̃�𝑘+1 = 𝑢𝑘 + 𝑅𝑘+1𝑖 �̂�𝑖 − 𝑧𝑘+1 (11)

𝜌𝑘+1, 𝑢𝑘+1 = update(𝜌𝑘 ) (12)

Then, consider each update, The rotation update can be viewed as

𝑅𝑘+1𝑖 = argmax 𝑡𝑟 (𝑅𝑖𝑀𝑖 ) (13)

𝑀𝑖 =
[
[𝐷𝑖 ] [�̂�𝑖 ]

] [[𝑊𝑖 ] 0

0 𝜌𝑘

] [
[�̃�𝑖 ]

[(𝑧𝑘 − 𝑢𝑘 )𝑇 ]

]
(14)

This becomes an Orthogonal Procrustes problem, and the solution

is given through single value decomposition

𝑀 = 𝑈 Σ𝑉𝑇 , 𝑅 = 𝑈𝑉𝑇
(15)

Mesh name |V| CPU time (s) GPU time (s)

homer 6002 10.03 3.39

bunny 6172 27.56 3.55

owl 39416 160.52 6.69

horse 48485 211.62 8.25

armadillo 49990 217.96 7.80

dragon 62472 335.71 9.16

Table 1: Running time for Cubic Stylization

up to det(𝑅) > 0 by alternating the sign of 𝑈 ’s column. The 𝑧

update is an instance of lasso problem, which can be solved with a

shrinkage step

𝑧𝑘+1 = 𝑆𝜆𝑎𝑖/𝜌𝑘 (𝑅
𝑘+1
𝑖 �̂�𝑖 + 𝑢𝑘 ) (16)

where the shrinkage is defined as

𝑆𝜒 (𝑥 𝑗 ) = (1 − 𝜒

|𝑥 𝑗 |
) + 𝑥 𝑗 (17)

Hencewe solve the local step. Then, we notice that L1 term 𝜆𝑎𝑖 ∥𝑅𝑖�̃�𝑖 ∥1
is independent of the vertex positions 𝑉 . Therefore, the global step

is exactly the same as ARAP energy optimization.

3.3 Implementation
We implement the cubic stylization [Liu and Jacobson 2019] algo-

rithm using Python and libigl [Jacobson et al. 2018]. We follow

Liu and Jacobson’s implementation and set the initial 𝜌 = 10
−4, 𝜇 =

50, 𝜏 = 2. In addition, we observe that the local step updates each

vertex independently, providing opportunities for parallelization.

We use Taichi [Hu et al. 2019] to implement a GPU-accelerated

version. To maximize parallelism, for each local step, we run a fixed

number of ADMM iterations instead of using the stopping criteria.

We set the initial ADMM iterations to 50 and reduce it to 5 through

the steps. From experiments, we found that this strategy is adequate

for convergence.

Compared to the CPU implementation [Liu and Jacobson 2019],

our implementation gradually accelerated the local step computa-

tion. We tested our implementation on an AMD R9 5900HS CPU

with a NVIDIA 3050ti GPU and listed the performance in Table 1.

4 USER INTERFACE
We provide a graphical interface for the users to visualize and easily

edit the meshes. The graphical interface is based on the GUI system

provided by Taichi. Given a triangle mesh, our graphical interface

allows the user to change the parameters in the algorithm, visualize

the deformations, and save the resulting mesh.

In our GUI, the user can directly change the ’cubeness’ parameter

and observe different results in real-time. The example of different

cubic stylization parameters that work differently on bunny.obj is

shown in Figure 5. Note that our algorithm only changes the vertex

position, hence other local geometric information, such as texture

coordinates, is preserved. As shown in Figure 2, the UV texture is

preserved through deformation. In addition to the cubeness param-

eter, we notice that cube stylization is orientation dependent. The

cubeness is achieved by forcing all vertex normals to align with
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Figure 6: Meshes with different cube orientation

the three standard axes. If we rotate the input mesh, the output

shape will be different. Note that the same effect can be achieved

by applying a coordinate transformation on all vertex normals.

Therefore, we add the coordinate rotation parameters so that users

can have different cube orientations. The experiments of different

orientation on cubic stylization are presented in Figure 6.

Similar to Sorkine and Alexa’s approach, we can put constraints

on vertex positions. Users can utilize our GUI to add handle points

and move the handle points to perform as-rigid-as-possible defor-

mation. We present some typical deformation results obtained with

this technique in Figure 3. Note that natural deformations are ob-

tained because the optimization automatically produces the correct

local rotations for each vertex. Our interface example is visualized

in Figure 4. The example mesh is Stanford Bunny and the red dots

are the user’s added constrained points. Our full demo video is

available at https://github.com/haoda-li/CS284A-cubic-craft.

5 CONCLUSION
In conclusion, our work presents a powerful tool for cubic styl-

ization that enables 3D artists to create Minecraft-styled objects

with ease. Our algorithm, which extends the as-rigid-as-possible

energy with an L1 regularization, works seamlessly with ADMM

optimization and preserves the underlying geometrical details and

topology of the mesh. Furthermore, our implementation with GPU

acceleration allows for real-time interactive editing, making the

tool both efficient and intuitive to use.

Overall, our work contributes to the growing field of geometry

processing by presenting a novel approach to stylization. The ability

to manipulate and transform meshes in a cubic style has significant

potential for a range of applications, including architectural design,

game development, and animation. We believe that our tool will be

particularly valuable to 3D artists who wish to create unique and

visually striking objects quickly and efficiently.
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